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Chapter 1

Introduction

Presented is a review of the classical lattice-gas method that deals with an artificial many-body sys-
tem of particles that has severely discretized microscopic dynamics and that behaves like a viscous
Navier-Stokes fluid in the long wavelength hydrodynamic limit. We explain and analytically quan-
tify how the artificial lattice-gas system behaves and we derive a set of criterion that specifies under
what conditions it can serve as an appropriate model of a viscous and compressible fluid. Then, we
show how the lattice-gas algorithm works using two test models. Finally, we compare the numerical
predictions obtained from a variety of different simulations of these two test models to the respec-
tive analytical predictions we previously obtained for these models. The resulting numerical and
analytical predictions are in good agreement in all cases, but this is only after many failed attempts
that were incrementally corrected over time by removing flaws from the derivation of the analytical
predictions as well as removing numerical bugs in the implementation of the algorithm and data col-
lection methodology. Therefore, the reason for the consistently good agreement between numerical
and analytical predictions is that the derived criteria set has been so sharply delineated that we now
know with great accuracy how to initialize the numerical model within a narrow parameter regime
where the lattice-gas system is operative. If the initial state of the lattice-gas system is outside this
narrow operating regime, the numerical predictions are not at all in agreement with the analytical
predictions and the behavior of the long wavelength modes in the system can no longer be classified
as hydrodynamical. We have not attempted to catalog any of the non-hydrodynamical behaviors of
a classical lattice-gas system. Instead, we have chosen to pursue a narrower goal, which as it turns
out is computationally more difficult to pursue, where we run the algorithm only in a parameter
regime where it behaves like a fluid.

1.1 Background

Much information about the details of the microscopic state of a many-body system is not relevant
to the hydrodynamic behavior of the many-body system at the macroscopic scale. So in numerically
simulating the macroscopic scale fluid behavior, it is possible to arrange for the computer to keep
track of many fewer particles than are in the actual system. In a typical lattice-gas simulation of fluid,
there are about 109 particles. In the simplest type of simulation, all the particles are indistinguishable
and move independently of one another, except that groups of particles may collide together when
they arrive at the same point. Over a decade ago, a classical lattice gas in two spatial dimensions was
found to behave like a viscous Navier-Stokes fluid at the macroscopic scale by Wolfram [1] and by
Frisch, Hasslacher, and Pomeau [2]. This is known as the FHP lattice gas. Soon after this discovery,
a classical lattice gas was found to model three-dimensional fluids [3]. In the simulation, there may
also be fixed obstacles with which the particles have perfectly elastic collisions. For example, one can
simulate vortex shedding in a fluid flowing around a fixed object [4, 5, 6]. The value of shear viscosity
for classical lattice-gas fluids has been studied by many researchers, including Wolfram [1], Frisch
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4 CHAPTER 1. INTRODUCTION

et al. [3], Somers and Rem [7], Hénon [8]. In the case where there is an attractive force between
particles spatially separated, multiphase fluid-like behavior is observed [9, 10, 11, 12, 13, 14, 15, 16]
(this is a principal application of the lattice-gas method).

Microscopic classical lattice-gas models of Navier-Stokes fluids are now well understood. The
lattice-gas method has been undergoing improvement, beginning in the mid 1970’s up to the present
day by many researchers, including Hardy, de Pazzis and Pomeau [17], Kadanoff, McNamara, and
Zanetti [18, 19, 20, 21], Boghosian et al. [22, 23, 24, 25], Boon et al. [26, 27], Ernst, Das, Brito,et
al. [28, 29, 30, 31], Hénon [8, 32], Doolen, S. Chen, et al. [33, 34, 35, 36, 37, 38], Frisch, Pomeau,
d’Humières et al. [2, 3], Appert, Zeleski, and Rothman et al. [9, 10, 11, 12, 13], and Yepez [14,
15, 16, 39, 40]. This is by no means either an exhaustive list of all researchers or publications in
this subject. An exhaustive preprint archive is maintained at Los Alamos National Laboratory (see
“http://xyz.lanl.gov/archive/comp-gas”).

1.2 Algorithmic Scheme

A lattice gas is a system of identical particles where the particles move on a discrete spatial
lattice. The spatial lattice is an array of points (which is also referred to as sites or nodes), arranged
in a regular crystallographic fashion, and the lattice appears exactly the same from whichever of the
points the array is viewed. This kind of lattice is called a Bravais lattice. In the case of a single-speed

lattice gas, as the name implies, all the particles in the system move at the same speed: c = `
τ , where

` is the distance between two neighboring sites of the lattice and τ is the time it takes for a particle
to hop from one site to another site in the nearest neighboring vicinity. In a lattice-gas system, all
particles move at same time and then they collide. The propagation step is called the streaming

phase. The propagation time, τ , for particle streaming is also the update time for the entire system
because we imagine that the collision phase of the update procedure happens instantaneously and
homogeneously across the entire system of particles. The smallest possible mean free path length
for a particle in a lattice-gas fluid is on the order of the grain size of the lattice, `. There exists a
new and unique global arrangement of particles, referred to as a state of the system, following each
and every update time period τ .1

The local state of each particle is specified by a position coordinate and a momentum vector. We
can think of each local state of the system as having a unique position in the lattice and a unique
orientation or displacement vector (corresponding to a momentum vector for particle’s motion). As
a particle moves through the spatial lattice, it hops from local state to local state. Each local state
is like a container that can temporarily hold a particle that is moving in a particular direction.

In the simplest type of lattice-gas model, no more than one particle can occupy a single local
state. However, more than one particle can reside at a single site at any one time since there
are B number of local states per site. Each local state holds a particle at that site moving in a
unique direction. Hence, the maximum number of particles that can coexist on a single site equals
the number of nearest neighboring sites, since it is possible that particles can hop from all nearest
neighboring sites to one particular site all at once. Of course, the minimum number of particles that
can reside at a site is zero, which can happen when all the particles at that site move away and no
new ones enter from any of the neighboring sites. So the information needed to encode a particle’s
occupancy of a local state is a single classical bit associated with that site and that local state. If
the bit is on, a particle is there. If the bit is off, then no particle occupies that local state.

1.3 History of Lattice-Gas Developments

Let me briefly review some of the developments of the lattice-gas method applied to fluid dy-
namics simulation. An overview of the lattice gas fluids has been given by Boghosian [41]. Lattice

1 The fact that every state of the system is unique follows from the principle of detailed-balance which is obeyed
during the on-site collisions that may occur after multiple particles arrive at a single site.



1.3. HISTORY OF LATTICE-GAS DEVELOPMENTS 5

gases are a special case of cellular automata, originally introduced by von Neumann and Ulam in
1948 [42] and popularized in the 1980’s by Fredkin [43] and by Stephen Wolfram [44, 45]. A broad
treatment of the cellular automata subject is presented by Toffoli and Margolus in their book on
cellular automata machines [46]. Following the cellular automata paradigm, lattice gases are suited
to fine-grained parallel processing, also called massively parallel processing.

A simple lattice-gas model of discrete molecular dynamics on a square lattice was analytically
investigated in the early 1970’s by the French, J. Hardy, O. de Pazzis, and Yves Pomeau [17].
Computer implementations were not carried out until a decade later. Their model, known as the
HPP model, was the first classical lattice gas to reproduce hydrodynamic behavior at the macroscopic
scale. In the late 1970’s, cellular automata research was underway at the Information Mechanics
Group at MIT on reversible computation by Fredkin, Toffoli, and Margolus [47, 43, 48]. They built
fine-grained special-purpose machines to simulate physics-like models [49, 48]. A review of the kind
of cellular automata modeling done in the early 1980’s is given by Vichniac [50]. Stephen Wolfram, a
visitor at the Information Mechanics Group in 1983, popularized cellular automata as simple models
of self-organization amenable to statistical mechanics analysis [44, 51].

In 1985 Wolfram completed the first hydrodynamic lattice-gas simulations on a triangular lattice
[52] on the first Connection Machine—at that time, lattice gases were a very appropriate application
for the bit oriented single instruction, multiple data Connection Machine [53]. After visiting the MIT
Information Mechanics Group and seeing a type of HPP lattice-gas running on the cellular automata
machine CAM-5 of Toffoli and Margolus [54, 49], Pomeau was inspired by seeing hydrodynamic-like
behavior (for example, the superposition of sound pulses) occurring at the macroscopic scale by
simple rules homogeneously applied at the microscopic scale. By 1986 Frisch, Hasslacher, and
Pomeau had reported the existence of an isotropic two-dimensional lattice gas on the triangular
lattice [2] that is described by the Navier-Stokes equation (1.4). Their model is referred to as
the FHP model. Accompanying the seminal 1986 FHP paper was a paper by Margolus, Toffoli,
and Vichniac on cellular automata machines for fluid dynamics modeling [55]. The contribution
of Margolus et al. was meant to complement the work of Frisch et al., pointing out the benefit of
dedicated computational hardware for lattice-gas models. In the same year Wolfram completed a
detailed treatment of the basic theory of discrete lattice-gas fluids using symmetry considerations
and worked out the mesoscopic scale description in the Boltzmann approximation [1].

By 1987 the lattice-gas methodology was extended to model three-dimensional flows by Frisch,
d’Humières, Hasslacher, Lallemand, Pomeau and Rivet [3]. The minimal lattice found was the
face centered hypercubic (FCHC) lattice. The FCHC lattice is four-dimensional with 24-nearest
neighbors. It is projected onto three dimensions in a simple fashion by limiting the depth of the
fourth dimension of the simulation volume to one lattice link. Much effort was spent on finding
optimal collisions to minimize the viscosity of the fluid [8].2

It was realized in the late 1980’s by Rivet and Frisch [56] and by McNamara and Zanetii [57]
that a lattice gas could be simulated directly at the mesoscopic scale using the lattice Boltzmann
equation. In place of the discrete microscopic representation, one begins at the mesoscopic scale by
representing the probability of a particle occupying a local state. It has the advantage of eliminating
inherent noisy fluctuations in the simulation, but at the expense of discarding the particle-particle
correlations.

In 1954, D. Bhatnager, E. Gross, and M. Krook showed how the collision integral in the Boltz-
mann equation can be reduced to a simple diagonal form [58]; this is termed the BGK approximation.
A cutoff to the collision integral is made by neglecting high order particle-particle correlations to
cast the Boltzmann equation as an approximate partial differential equation. Using the BGK ap-
proximation of the collision intregal, Chen, S. Chen and Mattaeus showed how one could remove
the anomalies (such as non-Galilean invariance) that occur at the macroscopic scale by tailoring the

2 This task is difficult because the FCHC lattice gas has 224 or 16.7 million local configurations. In practice, all
possible collisions are not included in a simulation because of the large demand for local memory needed to pre-store
all the necessary collisional events in table look-up format. To ease memory loads, Somers and Rem used lattice
isometries to reduce the size of look-up tables [7]. An implementation of FCHC on the CAM-8 was carried out in
1995 by Alder, Boghosian, Flekkoy, Margolus, and Rothman [22].
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functional form of the equilibrium occupancy probability [59]. The drawback of the BGK approxi-
mation is that it violates detailed balance, but it has computational advantages over modeling lattice
gases at the microscopic scale because of a significant viscosity reduction. Subsequently, a lattice
Boltzmann BGK model for compressible fluid dynamics was proposed by Alexander, H. Chen, S.
Chen, and Doolen [60] and another lattice Boltzmann BGK model for thermohydrodynamics was
proposed by Alexander, Chen, and Sterling [61].

The lattice Boltzmann equation in the BGK approximation has been a useful contribution of
the lattice gas community to high-performance computational physics [62].3 The lattice Boltzmann
equation (implemented within one hundred lines of code in a parallel language such as FORTRAN
90) allows one to efficiently model fluids with near second-order convergence using an explicit time-
step scheme. Martinez, Matthaeus, S. Chen, and Montgomery compared the lattice Boltzmann
BGK method to the well known spectral method and found comparable numerical efficiency in both
methods [63]. The lattice Boltzmann method was extended to the simulation of multiphase and
multispecies applications by Shan [64, 65, 66, 67], Grunau [68], and Yeomans et al. [69, 70, 71].
Because of the practicality of the lattice Boltzmann method, we have explored ways to restore
detailed balance, in particular by using an unconditionally stable collision process that uses unitary
matrices to produce the outgoing configuration of occupancy probabilities.

Other areas of lattice gas research include: thermohydrodynamics [38, 28, 27, 61, 63], immiscible
fluids [9, 37, 72, 73], reaction-diffusion systems [74, 75, 76], magnetohydrodynamics [77, 78, 79,
80], flow through porous media [81, 36], and renormalized kinetic theory [82, 83, 84, 85, 86, 87,
88]. Numerical measurements taken from classical lattice gas simulations are generally in excellent
agreement with mean-field theory predictions and, in the rare instance when this is not the case, with
more exact field theoretic calculations [82, 85, 88]. Lattice gases simulate physical systems while
keeping multiparticle correlations. The phenomenon of long-time tails in the velocity autocorrelation
function [89, 90, 91] has recently been observed in lattice gases by KirkPatrick [82] and Brito [83, 85].

A good review of the lattice gas subject, with particular emphasis on interfaces, phase transitions,
and multiphase flow, has recently been presented by Rothman and Zaleski [13]. Additionally, a
comprehensive bibliography of the subject has been compiled by Doolean [92].

1.4 Lattice-Gas Applications to Multiphase Fluid Dynamics

Microscopic lattice gas models of multiphase fluids were introduced by Chen et al. [34] and by
Appert and Zaleski [10, 11, 12], and Yepez [14, 15, 16]. It is known that interparticle potentials
can be modeled by including a single anisotropic nonlocal interaction in the lattice gas dynamics for
discrete momentum exchange between particles. The simplest model of this kind is the Kadanoff-
Swift-Ising model [93]. A nonlocal interaction of the type was used in a lattice gas scheme by Appert
and Zaleski [10] in 1990 to cause an attractive force between particles giving rise to an athermal
liquid-gas phase transition.4

To simulate the correct macroscopic dynamics, the interaction range for the momentum exchange
must be much smaller than any scale related to the interface region that exists between the two phases
in order for the multiphase lattice gas to be operative. For example, the interaction range must be
much smaller than the radius of curvature of a drop or bubble and much smaller than the wavelength
of a capillary wave or gravity wave travelling along the interface.

In the bulk region, the lattice-gas collision operator for the nonlocal interactions vanishes, and
only the local collisions determine the hydrodynamic behavior. Furthermore, the rheology of mul-
tiphase dynamics is driven by low Reynolds number flows. The rheology of droplets (for example

3 The first lattice Boltzmann simulations for three dimensional flows with high Reynolds numbers (about 50,000)
were presented in June 1993 at the International Conference on Pattern Formation and Lattice-Gas Automata spon-
sored by the Fields Institute, Waterloo, Canada.

4 A nonthermal lattice-gas is one with intensive quantities for the pressure and density, but no intensive quantity
related to temperature. This is because, a nonthermal lattice-gas is one where all particles move at a single speed and
a particle’s mass and momentum are uniquely defined, but its energy is not.
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diffusive growth, coalescence, or droplet breakup by high shear flows) is a complicated hydrody-
namic process yet well approximated as a nonturbulent one. Complex fluid behavior of this sort
is characterized by a well-defined local equilibrium that exists throughout the entire fluid volume.
The nonlinear behaviors driven by convection or by surface energetics occurs while the multiphase
fluid is in local equilibrium everywhere (particularly in the bulk regions) and slowly approaches a
global thermodynamic equilibrium. The local equilibrium of the fluid is characterized by a nearly
isotropic occupancy of local momentum states. At zeroth order, the fluid is locally at rest with the
probability of occupancy being uniformly distributed in momentum space. The nonequilibrium fluid
is characterized by a small first-order correction away from the local equilibrium. Momentum slowly
diffuses through the fluid system (quantified by the transport coefficient for viscosity) in a random
walk fashion.

Classical lattice gases use only a single bit to represent the occupancy of a particle in a local
state whereas in molecular dynamics codes a few hundred bits are used (six floating-point numbers
for position and momentum). To do physical modeling at the microscopic and mesoscopic scales,
molecular dynamics is the appropriate modeling tool. However, at large hydrodynamic scales, a
classical lattice gas is the modeling tool of choice. Predicting the hydrodynamics behaviors of
microemulsions (three species fluid of water, oil, and a surfactant with dipolar molecules) have
demonstrated that lattice gases are more efficient that molecular dynamics. No competing high
level scheme is known for microemulsions. The microemulsion lattice gases have been studied by
Boghosian, Coveney, and Emerton [24]. They have mapped out the transition between phases as a
function of surfactant concentration and domain growth laws, which have been found to be in good
agreement with experiment [25]. Lattice Boltzmann simulations of microemulsions has been done
by Yeomans et al. [94].

1.5 Limitations and Drawbacks of Classical Lattice Gases

Far away from equilibrium where local equilibrium conditions on the particle configurations
are violated, classical lattice gases behave in unphysical ways. These behaviors are not signs of
instabilities, but indicate that far away from equilibrium artifacts caused by the discreteness of the
microscopic dynamics can arise at the macroscopic scale.

The classical lattice gas is like its classical molecular dynamics counterpart. The available number
of particles, per computer simulation, is still far too few (on the order of billions) compared with
the vast numbers of particles in any natural situation (on the order of Avagadro’s number) it is
trying to represent. Classical lattice gases fail to adequately capture turbulence within large-scale
hydrodynamics motions because of limitations of available memory resources in classical computers.
Orszag and Yakhot have consequently argued that classical lattice gases are not as efficient as the
competing high level CFD methods which make more efficient use of available memory [95].

As well as limited in spatial and temporal resolution, classical lattice gases possess noisy fluctua-
tions [33]. These fluctuations are a mechanism whereby the lattice gas explores different metastable
states [13]. They have the negative aspect of effectively reducing the classical simulation’s macro-
scopic scale. If the system is ergotic5, we have one of two choices to remove the noise in any
measurement. We can either increase the spatial size of the lattice to allow for more spatial and
temporal coarse-grain averaging or increase the number of sample runs with different initial con-
ditions. The latter is a means of ensemble averaging. In either case, significant computational
resources must be expended to remove noisy fluctuations instead of expending these resources on
increasing the resolution of the simulation.

Some possibilities have been explored to try to avoid the noisy fluctuations in classical lattice gas
simulations. As mentioned above, in lattice Boltzmann simulations, noisy fluctuations in the system

5 A lattice gas is said to be ergotic if numerical results obtained by course-grain averaging over a single large
microscopic realization are identical to the numerical results obtained by ensemble averaging over many microscopic
realizations.
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have smaller sizes than in a system governed by microscopic lattice-gas rules. Yet the lattice Boltz-
mann method suffers from numerical instabilities typically encountered in finite-difference methods.
The reason for this comes about by the method’s lack of detailed balance, or even its lack of the
weaker condition of semi-detailed balance, in its BGK collision operator.6 Since it is essentially a
first-order finite-difference method [63], the explicit lattice Boltzmann BGK method is not more
efficient than state-of-the-art implicit and second-order convergent computational fluid dynamics
methods, for example methodes employing either multiscaling or curvilinear adaptive meshing.

1.6 The Navier-Stokes Equation

The long wavelength hydrodynamic behavior of a many-body system of particles can be modeled
at the macroscopic scale by an effective field theory, a set of coupled partial differential equations.
The smooth fields of mass density, ρ, and flow velocity, ~v, obey a mass continuity equation and
a viscous Navier-Stokes fluid equation of motion. There is also a parabolic heat equation for the
energy density, yet for simplicity, I will not consider the heat equation here, and instead I shall
consider an athermal fluid.

Because the mass increase within a region R is entirely accounted for by the flux of particles into
R through its boundary ∂R, the ρ and ~v fields obey the continuity equation

∂tρ + ∂i(ρvi) = 0. (1.1)

This is the first equation of motion. Here, the shorthand notation for partial derivatives is used:
∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi. The field equation embodying Newton’s second law, for a region R
expressing the change in the momentum density in terms of the stress applied at the boundary ∂R,
is Euler’s equation

∂t(ρvi) + ∂jΠij = 0. (1.2)

Now following Landau and Lifshitz [96], the momentum flux density tensor is written as7

Πij = Pδij + ρvivj − η(∂ivj + ∂jvi − 2

D
∂kvkδij) − ζδij∂kvk. (1.3)

The viscous stress tensor is σ′
ij = η(∂ivj + ∂jvi − 2

D ∂kvkδij) + ζδij∂kvk, where η and ζ are the
transport coefficients for the shear viscosity and bulk viscosity, respectively, and D is the number of
spatial dimensions of the system. The first two terms in Equation (1.3) represent the ideal part of
the momentum flux density tensor, which is sum of the pressure term, P , plus the convective term,
ρ~v~v, which is nonlinear in the velocity.

In general the pressure, P , is a function of the mass density field, ρ = ρ(~x, t), and for a thermal
fluid it also is a function of the temperature field, T = T (~x, t). The pressure tensor is diagonal
because the fluid is isotropic. P = P (ρ, T ) is termed the equation of state. For a neutral fluid

comprised of independently moving particles, the pressure depends linearly on the mass density,
P = c2

sρ, where cs is the speed of sound in the fluid. In a thermohydrodynamic system, the sound

speed is temperature dependent, cs =
√

kBT
m (where kB is the Boltzmann constant and m is the

mass of a single particle). In this case the pressure obeys the well known ideal gas law, P = nkBT ,
where n = ρ

m is the particle number density. For an athermal hydrodynamic system (one where

6 Mass and momentum are only conserved to within the precision of the floating-point representation. If the value
of the single-particle distribution function at some site is close to either zero or one, it is possible that the occupancy
probabilities there will become either negative or greater than one because of numerical round-off errors . When
either of these situations arise, the lattice Boltzmann simulation will eventually become unstable everywhere and the
values of the distribution function will diverge until a numerical underflow or overflow event occurs. Usually the BGK
collision operator becomes unstable in a region with a high density gradient, for example at an interfacial boundary,
or in a region a with a high velocity shear.

7 For non-divergent flow (∂jvj = 0) in the incompressible fluid limit, Equation (1.3) is Πij = Pδij + ρvivj +
η(∂ivj + ∂jvi). Furthermore, the term η∂ivj vanishes in the Euler equation in this limit.
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the system is at uniform homogeneous temperture, and where heat transport is neglected), cs is a
constant.

Substituting Equation (1.3) into Euler’s equation Equation (1.2), gives us the second equation
of motion for a viscous isotropic fluid

ρ (∂tvi + vj∂jvi) = −∂iP + ρν∂2vi +
(

ζ +
η

D

)

∂i∂jvj . (1.4)

This is the called the Navier-Stokes equation. In Equation (1.4), η is the shear viscosity and ζ is the
bulk viscosity. The transport coefficient for momentum diffusion, ν ≡ η

ρ , is the kinematic viscosity. It
gives a measure for the rate of decay of local shears in the fluid and determines how fast a perturbed
fluid will relax from an anisotropic flow profile at the macroscopic scale to an isotropic steady state
profile. Both the shear viscosity and the bulk viscosity cause damping of compressional waves in
the mass density field. The shear viscosity alone causes damping of shear waves in the momentum
density field. In general, for a nonisotropic fluid, there may also exist a cubic viscosity. However, in
our case we shall deal with isotropic fluids where the shear and cubic viscosities coincide.

1.7 Dimensionless Numbers

Let L and T denote the characteristic length and time scales, respectively, of a hydrodynamic
scale fluctuation. That is, L and T are quantities characterizing the fluid’s configuration at the
macroscopic scale. Examples of the characteristic length scale for hydrodynamic flow are the wave-
length of a compressional wave in the mass density field, the wavelength of a shear wave in the
momentum density field, or the diameter of a fluid vortex. The mean free path is the average
distance a particle travels between collisions. Let λ and τ denote the mean-free length and time,
respectively, characterizing the microscopic particle collisions. Relevant hydrodynamic quantities
are the

• characteristic flow speed, u ∼ L
T ;

• sound speed, cs ∼ λ
τ ;

• shear viscosity, η (and the kinematic viscosity, ν ≡ η
ρ ∼ λ2

τ ); and,

• bulk viscosity, ζ.

The relevant dimensionless quantities are the

• Knudsen number, Kn, defined as the ratio of the mean-free path to the characteristic length
scale (Kn ≡ λ

L );

• Strouhal number, Sh, defined as the ratio of the mean-free time to the characteristic time scale
(Sh ≡ τ

T );

• Mach number, M, defined as the ratio of the characteristic velocity to the sound speed (M ≡ u
cs

);

• Reynolds number, Re, defined as the ratio of the product of the characteristic velocity times

characteristic length to the kinematic viscosity (Re ≡ uL
ν ∼ M

Kn); and,

• fractional mass density variation, δρ
ρ .
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Chapter 2

An Analytical Method for

Predicting Macroscopic Behavior

Table 2.1: Lattice-Gas Model Symbols

Symbols Names

` microscopic cell size
`s mesoscopic cell size
τ time unit
m single particle mass
c velocity unit ( `

τ )
D spatial dimension
B lattice coordination number
a directional index (1,2,. . . , B)

i, j, k, l spatial indices
eai displacement vectors

2.1 Mesoscopic Scale

2.1.1 Derivation of the Linearized Kinetic Equation

Define the occupancy probability of a local state, fa ≡ 〈na〉, as an ensemble average over inde-
pendent microscopic realizations of the lattice-gas system. In the mean-field limit approximate, the
particle occupancies fa’s are considered uncorrelated at all times. Neglecting the particle-particle
correlations is known as the Boltzmann molecular chaos assumption (or the Stosszahlansatz). This
approximation allows us to estimate the macroscopic quantities, such as the damping constants, and
the shear and bulk viscosities (and the equation of state in multiphase lattice gases). We describe
the mesoscopic dynamics of a lattice-gas system at the mesoscopic scale by the lattice Boltzmann
equation

fa(~r + `êa, t + τ) = fa(~r, t) + Ωmeso

a (f∗), (2.1)

where the momentum index a ranges from 0 to B − 1 specifying the local states at each site of
the lattice. The superscript on the collision term, Ωmeso

a , indicates that its functional form is to be
expressed at the mesoscopic scale. The asterisk on occupation probability, f∗, in the collision term
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Table 2.2: Glossary of Single-Speed Lattice Gas Variables (L=1)

Variables Names

na microscopic number occupation variable for a local state
~p microscopic momentum

Ωa microscopic collision operator
s microscopic configuration of particles at a site

Tss′ transition matrix
fa mesoscopic probability of occupation of a local state, 〈na〉

Ωmeso
a mesoscopic collision operator

Jab Jacobian matrix, ∂Ωa

∂fb

|α〉 eigenkets of J
κα eigenvalues of J
cs macroscopic sound speed
P macroscopic pressure
ρ macroscopic density
~v macroscopic velocity

Πij macroscopic momentum flux density tensor
η shear viscosity
ν kinematic viscosity, η

ρ

indicates that Ωmeso
a depends on all the local states in the system and not just fa. In the mean-field

limit, Ωmeso
a (f∗) = Ωmf

a (f0, f1, . . . , fB−1) depends only on the local states at the lattice site ~r.
The parameters ` and τ are the cell size and the update time, respectively, of the spacetime

lattice at the mesoscopic scale. The parameter B equals the number of local states at a site in a
Bravais lattice. The vectors ~ea are displacement vectors whose length corresponds to the speed of
the particles, since each local state may be occupied by a particle with momentum ~p ≡ mc~ea.

2.1.2 The Approach to Steady-State Equilibrium

The system is said to be in steady-state equilibrium (which may also be called thermodynamic

equilibrium) when the collision term in the lattice Boltzmann equation vanishes

Ωmeso

a (f eq

∗ ) = 0, (2.2)

where f eq
a is equilibrium occupation probabilities. Therefore, at steady-state equilibrium, the occu-

pancy probabilities are unchanging over time. The distribution along the momentum directions of
the particle occupancies are uniform, so the local configurations are perfectly symmetric, and Ωmeso

a

cannot cause any further changes.
Let us predict the non-equilibrium behavior of the lattice-gas system when it is nearby and

approaching steady-state equilibrium. Since continuous macroscopic fields for the mass and momen-
tum densites are defined for the lattice-gas system in the continuum limit, by Equations (2.34) and
(2.35), we can characterize the system using the dimensionless quantities traditionally used to char-
acterize fluid systems. Given the law of similarity1, if the macroscopic scale behavior of the lattice
gas is fluid-like, then it may be compared to a natural fluid characterized by the same dimensionless
quantities.

Several dimensionless quantities (the Knudsen, Strouhal, Mach, and Reynolds numbers, and
fractional mass density variation) allow us to quantify how close the system is to steady-state equi-
librium. At steady-state equilibrium all the dimensionless numbers vanish (only the Mach number

1 See page 56 of Fluid Mechanics by Laudau and Lifshitz [96].
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may be nonzero at equilibrium if there is a global uniform background flow, however this can be
avoided by an appropriate choice of the Galilean frame-of-reference). In nonequilibrium situations
far from steady-state, Kn, Sh, M, and δρ

ρ are order unity.

Hydrodynamic behavior is attained in the long wavelength limit where Kn and Sh are close to
zero. Viscous hydrodynamic behavior is attained in the long wavelength limit when Sh ∼ Kn2

and δρ
ρ ∼ Kn. This is called diffusive ordering which is characteristic of random walk processes.2.

Incompressible viscous hydrodynamics occurs when we also have M ∼ Kn so that Re ∼ O(1) and
δρ
ρ ∼ Kn2. A procedure for linearizing the mesoscopic Boltzmann equation, and comparing the
resulting dispersion relations to the solution of the effective field theory equations of motions, is
given below in Section 2.1.3. The procedure involves a series expansions in δρ

ρ . The standard Mach

number expansion of the probability of occupancy is used [3]. Then, a Chapman-Enskog procedure,
given in Section 2.2.2, which is necessary for the derivation of the macroscopic equations of motion
involves perturbative expansions in Kn and Sh, given in Section 2.2.3.

At t = ∞, an infinite lattice-gas system completely relaxes to steady-state equilibrium, where
the mass density field is uniformly constant. The steady-state equilibrium occupation probability,
denoted by d, of every local state are all the same fa(~x, ∞) = d, for all a and all ~x. For a lattice
of finite size, the number of phasespace points is also finite, although extremely large. The number
of phasespace points equals 2BV , where B is the number of local states per site and V is the total
number of sites. Hence the Poincaré recurrence time, which is the number of phasespace points of
a closed loop trajectory, is also finite and the state of the finite-lattice gas system is not defined at
t = ∞. Hence, we may instead say that the lattice-system has completely relaxed to a steady state
on a time scale much much larger than the characteristic time ( τ

Sh
) for the largest hydrodynamic

scale fluctuation.

2.1.3 Linearized Lattice Boltzmann Equation

Our first step towards analyzing the nonsteady-state behavior of the system will be to expand
fnoneq

a about d. We write the occupancy probability as a constant part (d ≡ ρ
mB ) and a fluctuating

part δfa(~x, t) � d

fa(~x, t) = d + δfa(~x, t). (2.3)

We can also expand the collision term about steady-state equilibrium

Ωmeso

a (f∗) = Ωmeso

a (f eq

∗ ) + δΩmeso

a . (2.4)

Now the first term on the R.H.S. vanishes according to Equation (2.2) and the second term on the
R.H.S. arises because of fluctuations in the probability of occupancies of all the local states in the
entire system.

At the mesoscopic scale, we regard each of the occupancy probabilities, fa, as a continuous
variable. The basic approach is that Ωa is a continuous and differentiable function of the occu-
pation variables. With this understanding, using the chain rule, we can write the collision term
Equation (2.4) as follows

Ωmeso

a (f eq

∗ ) = δΩmeso

a =

B∑

b=1

∂Ωmeso
a

∂fb

∣
∣
∣
∣
f∗=d

δfb + O(δf2). (2.5)

Using Equations (2.3) and (2.5), we can write the lattice Boltzmann equation Equation (2.1) in
linearized form

δfa(~x + `sêa, t + τ) = δfa(~x, t) + Jabδfb(~r, t), (2.6)

2 See Figure 3.9 using the classical 1D3Px model to illustrate diffusive ordering that is characteristic of lattice-gas
fluids. Furthermore, a tagged particle in a lattice gas undergoes a random walk, and the observed diffusive behavior
of tagged-particles in lattice-gas simulations agrees well with analytical results [97, 29]
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where the Jacobian of the collision term is defined as

Jab ≡ ∂Ωmeso
a

∂fb

∣
∣
∣
∣
f∗=d

. (2.7)

Let f̃a(~k, ω) denote the discrete Fourier transform of the occupation probability fa(~x, t). Then taking
the discrete Fourier transform of the linearized Boltzmann equation Equation (2.6) we obtain the
following characteristic equation

ei(`sêa·~k+ωτ)δf̃a(~k, ω) = δf̃a(~k, ω) + Jabδf̃b(~k, ω), (2.8)

which we rewrite as [(

ei(`sêa·~k+ωτ) − 1
)

δab − Jab

]

δf̃b(~k, ω) = 0. (2.9)

Therefore, we have the following matrix equation

M δf̃ = 0, (2.10)

where δ̃f = (δ̃f0, δ̃f1, . . . , δ̃fB−1) and the components of the square matrix M are

Mab ≡
(

ei(`sêa·~k+ωτ) − 1
)

δab − Jab. (2.11)

Solving Equation (2.10) gives us the dispersion relations for the system obeying what is called
generalized hydrodynamics. The generalized hydrodynamics for classical lattice-gas systems have
been previously worked out [30, 98]. The development given here for the lattice-gas system follows
Das and Ernst’s treatment of a classical lattice-gas system [30]. However, in the present treatment, I
do not use differential point form notation for mesoscopic fields (since technically this is unwarranted
and allowed only in the continuum limit). Instead, to be absolutely rigorous, I have applied the
discrete Fourier transform to the mesoscopic field to obtain Equations (2.10) and (2.11). So up to
this point in the analytical treatment, I have not invoked the continuum limit.

2.1.4 Dispersion Relations

To solve Equation (2.10) for the dispersion relation ω = ω(~k), we must find the B roots of the
secular determinant of the matrix M [30, 98]. The solution can be found analytically for the 1D3Px
lattice gas and numerically for more complicated lattice gases. In general, there are two types of
long wavelength excitations (~k → 0), and they are called hard kinetic modes and soft hydrodynamic

modes.
In the long-wavelength limit, the kinetic modes are nonvanishing at first order. The kinetic

modes decay rapidly in the lattice-gas system because of a positive imaginary part in the eigenvalue
spectrum of ω, (Im(ω) > 0), at k = 0. In contrast, the soft hydrodynamic modes decay over a
long-time scale. They are associated with eigenvalues that vanish in the long-wavelength limit,
(Im(ω) = 0), at k = 0. These vanishing eigenvalues in turn are associated with the conserved
quantities in the lattice-gas system.

In the long-wavelength limit, k ∼ 0, the dispersion relation for the 1D3Px lattice-gas corresponds
to a damped sound mode

ω(~k) = ±csk + iΓ(ρ)k2. (2.12)

The real part of ω is linear in the wave number. Since Re(ω) is linear in the wave number, the sound
mode excitation propagates at the sound velocity corresponding to the slope, which is denoted here
by cs. Furthermore, the sound mode is damped in the viscous hydrodynamic regime characterized
by diffusive ordering where the dispersion relation is parabolic in wavenumber, Im(ω) ∼ O(k2).
In general, in a single-speed lattice gas, the decay of the hydrodynamic modes depends on shear
viscosity and sound damping (there is no mode related to bulk viscosity).
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2.1.5 Criterion for Deviations from Local Equilibria

At local equilibrium, we assume that the occupancies of the local states at each site in the system
are isotropic. This is called the subsonic limit. A stronger definition of the subsonic limit is when
the fractional variation of the occupancy probabilities, |δfa|/f eq

a , at all lattice sites, are assumed to
be uniformly distributed along all the momentum directions, 1 ≤ a ≤ B. Hence, the criterion for a
fractional mass density variation on the order of the Knudsen number, can be expressed as3

|δfa|
f eq

a
∼ λ

BL
. (2.13)

The maximum size of the simulation volume is limited by the amount of physical computational
resources available. In a microscopic lattice-gas simulation, the occupation probabilities, fa, must
be determined by either partitioning the maximum size simulation into ensemble realizations or
coarse-grain blocks. Let us, for the moment, revisit the subject of averaging over the microscopic
quantities to obtain the mesoscopic values. There are more details to discuss.

In ensemble averaging, many realizations of the lattice-gas system, which are identical at the
macroscopic scale, are computed independently. Measurements are separately made from each re-
alization, and all the resulting measurements are then averaged. For example, the state of the αth

qubit is measured for each copy of the system, which results in a series of 1’s and 0’s, and the average
value is an estimate of fα. In coarse-grain averaging, one measures the occupancy of all the local
states, occupied by a particle with momentum mcêa, at all the sites within a spacetime block of a
large microscopic system. Again, this results in a series of 1’s and 0’s, which are then averaged to
estimate fa( ~X, T ), where say ~X and T denote the coordinates of the centroid of a spacetime block
within the superlattice.

In either case, whether ensemble or coarse-grain averaging is employed, all the available com-
putational resources are expended. However, the numerical results can be quite different, for two
reasons: because lattice-gas systems obey diffusive ordering and because of renormalization effects
arising from particle-particle correlations.

Let us first consider the consequences of diffusive ordering. If one doubles the system size,
L → 2L, one must quadruple the simulation time, T → 4T , to evolve to a macroscopic state
similar to the one obtained by running a simulation of size L for time T . Consequently, if the
fixed amount of computational resource is partitioned to do ensemble averaging, then many “small”
systems are simulated which “rapidly” relax towards steady-state equilibrium. If the fixed amount
of computation resource is partitioned to do coarse-grain averaging, then one “large” system is
simulated which “slowly” relaxes towards steady state. Therefore, estimates can be made more
quickly using ensemble averaging, but only in those situations were particle-particle correlations can
be neglected.

This brings us to the next issue of renormalization. In a large system simulation, there is
sufficient time for many particle collision events to occur allowing the particle occupancies to become
correlated. These particle-particle correlations, in certain situations, may have an appreciable effect
on the value of the transport coefficients [88]. One enumerates all connected diagrams corresponding
to the pathways by which outgoing particles, initially correlated by a collision, move through the
system, interact with other particles, and eventually return as incoming particles to a final collision
event. Each connected diagram corresponds to a term in an asymptotic series expansion of the
collision operator, which is summed to give a renormalized collision operator. If the ultimate aim of
is to estimate a transport coefficient, which strongly depends on particle-particle correlations, then
coarse-graining averaging must be used [99, 88].

3 Suppose, as a concrete example, that an initial nonequilibrium state of the system is chosen with a characteristic
feature size on the order of say one hundred lattice grid units, L ∼ 100`. Next, suppose the mean-free path length
is on the order of the size of a single primitive lattice cell, λ ∼ `. If the fractional mass density variation, which
must be on the order of the Knudsen number is δρ

ρ
∼ λ

L
∼ 0.01, then the lattice gas would accurately model the

dynamical fluid behavior in the regime of incompressible viscous hydrodynamics. Continuing the example, if B = 6
then |δfa|/feq

a ∼ 0.002.
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In either case, it is necessary to satisfy the criterion that (δfa/f eq
a ) ∼ O(Kn) or smaller for all a.

If this criterion is satisfied, the linearized lattice Boltzmann equation Equation (2.6) can accurately
describe Navier-Stokes hydrodynamics. And this is a stronger requirement then δρ

ρ ∼ O(Kn). The

requirement that (δfa/f eq
a ) ∼ O(Kn) for viscous hydrodynamics (or the more stringent requirement

that (δfa/f eq
a ) ∼ O(Kn2) for incompressible viscous hydrodynamics) implies a lower bound for the

number of states used in an ensemble average or for the minimum size of the spacetime block used in
a coarse-grain average. All these considerations, usually applied to the classical lattice-gas method,
are also relevant to quantum lattice-gas simulations [100, 101], which are not reviewed here.

2.2 Macroscopic Scale

2.2.1 Eigensystem of the Linearized Collision Operator

In the long wavelength (~k → 0) limit, the characteristic equation Equation (2.9) reduces to the
simple form

[(eωτ − 1)1 − J] δf̃ = 0. (2.14)

Expanding to first order in Sh (second order in ε) this become the eigenvalue equation

J δf̃ = ωτδf̃ + O(ε3). (2.15)

Therefore, in the long-wavelength and low-frequency limits, the eigenvalues of J determine possible
values for ω and in turn the hydrodynamic and kinetic behavior of the lattice-gas system. This
eigenvalue problem is analytically solvable, without the need for any numerical treatment as is needed
for finding the ~k-dependent roots of the secular determinant of the matrix M in Equation (2.11).

Consider the following eigenvalue equation

Jabξ
α
b = καξα

a , (2.16)

with eigenvectors ξα and eigenvalues κα, where α = 1, . . . , B.4 Let us see why there will be as many
zero eigenvalues as there are conserved quantities in the lattice gas dynamics. For convenience, we
will use ket notation where |α〉 ≡ (ξα

1 , ξα
2 , . . . , ξα

B) and |δf̃〉 ≡ (δf̃1, δf̃2, . . . , δf̃B). We can write J as
follows

J =

B∑

α=1

κα|α〉〈α|, (2.19)

so Equation (2.15) becomes
B∑

α=1

κα|α〉〈α|δf̃〉 = ωτ |δf̃〉. (2.20)

All the scalars 〈α|δf̃ (1)〉 for which κα = 0 have no effect on the dynamics since J |δf̃〉 = 0 and
so correspond to the conserved quantities of the system. The set of eigenvectors with degenerate
eigenvalue of zero span what is called the hydrodynamic space, which I denote by H. The remaining
set of eigenvectors (with nonzero eigenvalues) span what is called the kinetic space, which I denote

4 The problem is simplified if J is circulant [1]. The components of J can be specified by the difference of the
indices, Jab = Ja−b. Hence, we make the ansatz that the eigenvectors ξα have the following form

ξα
a = e2πiaα/B . (2.17)

Then inserting Equation (2.17) into Equation (2.16) and taking m = a − b, gives a solution for the eigenvalues

κα =

B∑

m=1

Jme2πimα/B . (2.18)
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as K. Therefore J can be explicitly written as a linear combination over eigenvectors in the kinetic
space

J =
∑

α∈K
κα|α〉〈α|. (2.21)

In an athermal system, there are 1 + D conserved quantities, the mass plus the momentum for
each dimension of the space. So H is a D + 1 dimensional space and K is a B − D − 1 dimensional
space. Let us denote the kinetic eigenkets as follows, |D+2〉, |D+3〉, . . . , |B〉, which span the kinetic
subspace K. Then, the generalized inverse of J is defined over K as follows

J−1 = (|D + 2〉 |D + 3〉 · · · |B〉)
︸ ︷︷ ︸

B×K matrix








1
κD+2

0 · · · 0

0 1
κD+3

· · · 0

...
. . .

0 · · · 1
κB








︸ ︷︷ ︸

K×K matrix







〈D + 2|
〈D + 3|

...
〈B|







︸ ︷︷ ︸

K×B matrix

. (2.22)

From Equation (2.22), it follows by construction that

J−1|α〉 =
1

κα
|α〉, (2.23)

for |α〉 ∈ K.
Within K there exists the viscous subspace, V ⊂ K characterized by the degenerate eigenvalue κη.

Because the collisional process is invariant under the finite point-group symmetries of the Bravais
lattice, consequently there is a lack of preference in direction for momentum diffusion in the system.
Hence, there is a subspace of K characterized a degenerate eigenvalue which contributes positively
to the shear and bulk viscosities.

A ket |eiej〉 may be formed from the dyadic product eaieaj . The ket | eiej〉 resides in V. It is an
eigenket of the generalized inverse of the Jacobian of the collision operator, J−1, and has eigenvalue
1

κη
. That is, for a hydrodynamic lattice-gas fluid

J−1|eiej〉 =
1

κη
|eiej〉. (2.24)

The identity Equation (2.24) will be needed in the following section.

2.2.2 Chapman-Enskog Expansion

The characteristic equation Equation (2.9) of the linearized lattice Boltzmann equation
[(

e`sêa·~k+ωτ − 1
)

δab − Jab

]

δf̃b(~k, ω) = 0

is an approximate description of the mesoscopic particle dynamics since the collision term on the
R.H.S. has been expanded to first order about the equilibrium value of the occupation probability.
In this approximation, the collision term, Jab, acts as a linear operator on the local configuration δf .
I would now like to expand the L.H.S. of this characteristic equation. To do so, let us use ε as a small
expansion parameter, ε � 1. In the viscous hydrodynamic regime, this expansion parameter is the
Knudsen number, Kn ' êa · ~k = `s|k| ∼ ε. And, because of diffusive ordering, the Strouhal number
is Sh ' ωτ ∼ ε2. We expect Equation (2.9) is an appropriate description of the mesoscopic dynamics
so long as the nonequilibrium occupation probabilities are close enough to their equilibrium values
so that the action of the linearized collision term, Jab, is sufficient to cause any such nonequilibrium
configuration to relax back to an equilibrium configuration.

Begin by expanding Equation (2.9) to first order in ε

(i`sêa · ~kδab − Jab)δf̃b ' 0. (2.25)
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The basic approach is that the deviations, δf̃a, of the occupation probability can be expanded in
powers of ε

δf̃a = δf̃ (0)
a + δf̃ (1)

a + O(ε2), (2.26)

where δf̃
(0)
a ∼ ε and δf̃

(1)
a ∼ ε2. The superscript on δf̃ (0) denotes that it is a deviation from the

steady-state equilibrium d due to bulk motion of the fluid. The superscript on δf̃ (1) denotes that it is
a deviation due to spatial gradients in the bulk profile. We require that the largest Mach number at
any point in the system must be small, M � 1, that δf̃ (0) ∼ M ∼ ε. We can insert Equation (2.26)

into the first order ε-expansion of the characteristic equation Equation (2.25), Jabδf̃
(0)
b = 0, and we

equate the two O(ε2) terms

i`sêa · ~kδf̃ (0)
a = Jabδf̃

(1)
b . (2.27)

Since J has a well-defined generalized inverse, we can invert the Jacobian matrix according to
Equation (2.22) to solve for the second order correction to the occupation probability

δf̃ (1) = i`sJ
−1
ab êb · ~kδf̃

(0)
b . (2.28)

Therefore, using the basic approach of the Chapman-Enskog expansion Equation (2.26), we have
the result that

δf̃a = [δab + i`sJ
−1
ab êb · ~k]δf̃

(0)
b + O(ε3). (2.29)

In the continuum limit, we are justified in taking the inverse Fourier transform of Equation (2.29),
which gives the fluctuating part of the non-equilibrium probability occupancy in differential point
form

δfa(~x, t) = [δab + `sJ
−1
ab êb · ∇]δf

(0)
b (~x, t) + O(ε3). (2.30)

Then using Equation (2.3), the probability of occupancy in the continuum limit is

fa(~x, t) = [δab + `sJ
−1
ab êb · ∇]f

(0)
b (~x, t) + O(ε3). (2.31)

We can insert the standard Mach number expansion [3] into Equation (2.31). After some algebraic
manipulation, the result is

fa = d[1 +
D

c
eaivi + g

D(D + 2)

2c2
Qaijvivj + τDJ−1

ab ebiebj∂ivj ] + O(M3). (2.32)

Using the identity Equation (2.24), that J−1
ab ebiebj = 1

κη
eaieaj , Equation (2.32) becomes

fa = d[1 +
D

c
eaivi + g

D(D + 2)

2c2
Qaijvivj − τD

κη
eaieaj∂ivj ] + O(M3). (2.33)

The approximation Equation (2.33) is a good one provided several conditions are met:

1. the ratio of the superlattice cell size to the characteristic scale length of the small hydrody-
namics fluctuation is close to zero, `s

L ∼ 0 (satisfied in the continuum limit)

2. the angular distribution of particles along momentum directions is close to an isotropic one

3. the flow is subsonic (M � 1)

4. spatial gradients are small (Kn ∼ 0 and δρ
ρ is small).
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2.2.3 Derivation of the Continuum Equations

The local mass density and the momentum density at ~x and t can be expressed in terms of the
occupancy probability, fa(~x, t), is

ρ(~x, t) = lim
`s→0

B∑

a=1

m fa(~x, t) (2.34)

ρ(~x, t)vi(~x, t) = lim
`s→0

B∑

a=1

mc2eai fa(~x, t).

(2.35)

The mass and momentum densities are considered “macroscopic” field quantities. They are only well
defined in the continuum limit, where the primitive cell size of the lattice approaches zero. However,
for practical considerations, they are approximated by high resolution grids with small but finite
cell size.

The derivation of the continuum equations of motion at the macroscopic scale is carried out in
this section. The method of derivation is outlined by these following few steps:

1. Expand the mesoscopic Boltzmann equation to first order in time and second order in space.5

2. In the continuum limit, calculate the first and second moments of the mesoscopic Boltzmann
equation .6

3. Insert the mesoscopic occupancy probability given Equation (2.33) into the moment equations
obtained in Step 2.

After some algebraic manipulations, we thereby obtain an approximation of the equations of motion
that serve as an effective field theory at the macroscopic scale. Because of diffusive ordering, the
result is that the macroscopic equations of motion are a set of coupled parabolic partial differential
equations. In the present derivation, I do not give a multi-scale analysis such as the one carried
out by Frisch et al. [3] in their treatment of 2 and 3 dimensional lattice-gas hydrodynamics. This
omission is justified because only a single time-scale is needed for most lattice-gas systems since
the transport coefficients are very large. That is, there is little or no separation between the short
time scale associated with sound mode excitations and the longer time scale associated with viscous
mode excitations arising from momentum diffusion. Viscous damping in lattice-gas fluids is observed
over relatively short-time scales and therefore significantly affects, and is mixed in with, sound wave
propagation and convection. Nevertheless, at the end of this section, I will divide the effective field
theory into two sets of equations that apply at short and long time scales.

We determine the macroscopic equations of motion using the lattice Boltzmann equation

dfa

dt
= lim

τ→0

`s→0

Ωmeso
a

τ
. (2.36)

In consideration of diffusive ordering, we expand the L.H.S. of this equation to first-order in time
and second-order in space

∂fa

∂t
+ cêa · ∇fa +

`2s
2τ

(êa · ∇)2fa + O(Kn3, Sh2) = lim
τ→0

`s→0

Ωmeso
a

τ
. (2.37)

5 Only a first order time derivative is needed because of the long-time scales associated with viscous damping.
Time and spatial scales are related parabolically (T ∼ L2 or ε2 ∼ δx2 ∼ δt) in lattice-gas systems.

6 This is done because for each additive conserved quantity of the dynamics, a macroscopic field is expressed as a
moment of the mesoscopic field of probability of occupancies. In the present case, ρ and ~v are expressed in terms of
the fa’s according Equations (2.34) and (2.35).
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This is called the lattice-Boltzmann equation, where Ωmeso
a is defined by Equation (2.5). Since

∑

a Ωmeso
a = 0, the zeroth moment of Equation (2.37) is

∂t

(

m
∑

a

fa

)

+ ∂i

(

mc
∑

a

eaifa

)

+
`2s
2τ

∂i∂j

(
∑

a

eaieajfa

)

+ O(Kn3, Sh2) = 0. (2.38)

Using the identities [1]

B∑

a=1

êa = 0 (2.39)

B∑

a=1

êaêa =
B

D
∆(2) (2.40)

B∑

a=1

êaêaêa = 0 (2.41)

B∑

a=1

êaêaêaêa =
B

D(D + 2)
∆(4), (2.42)

the corrected occupancy probability Equation (2.33), along with definitions for the mass density
Equation (2.34) and momentum density Equation (2.35), this reduces to a mass continuity equation
in the long-wavelength, low-frequency, and subsonic limits

∂tρ + ∂i(ρvi) + O(Kn3, Sh2, M3) = 0. (2.43)

Since
∑

a eaiΩ
meso
a = 0 too, the first moment of Equation (2.37) is

∂t

(

mc
∑

a

eaifa

)

+ ∂j

(

mc2
∑

a

eaieajfa

)

+
`2s
2τ

∂j∂k

(

mc
∑

a

eaieajeakfa

)

+ O(Kn3, Sh2) = 0.

(2.44)
This reduces to Euler’s equation in the long-wavelength, low-frequency, and subsonic limits

∂t(ρvi) + ∂jΠij + O(Kn3, Sh2, M3) = 0, (2.45)

where the momentum flux density is

Πij = Pij + gρvivj − ρ`2s
(D + 2)τκη

∂jvi +
`2s
2τ

ρ

(D + 2)
∂jvi (2.46)

or

Πij = Pij + gρvivj − ρ`2s
(D + 2)τ

(
1

κη
− 1

2
)∂jvi. (2.47)

The shift of − 1
2 is a constant negative contribution to the shear viscosity by a lattice effect. With

sound speed cs ≡ `s

τ
√

D
, identify the isotropic pressure tensor as

Pij = ρc2
s

(

1 − g
v2

c2

`2

`2s

)

δij . (2.48)

Finally, inserting Equation (2.47) into Euler’s equation Equation (2.45), the momentum equation
for viscous flow is

∂t(ρvi) + ∂j(gρvivj) + O(Kn3, Sh2, M3) = −∂iP + η∂2vi +
(

ζ +
η

D

)

∂i∂jvj , (2.49)
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with shear viscosity

η =
ρ`2s
τ

1

D + 2

(
1

κη
− 1

2

)

, (2.50)

and bulk viscosity

ζ =
ρ`2s
τ

2D − 1

D(D + 2)

(
1

κη
− 1

2

)

. (2.51)

With small Knudsen, Strouhal, and Mach numbers, the momentum equation Equation (2.49) ap-
proximates the Navier-Stokes equation except that there is an extra density-dependent factor, g(d),
in the convective term in Equation (2.49). If g is not unity, Galilean invariance is destroyed. It is
possible to alter the collision term in the lattice Boltzmann equation so that g = 1. This was first
done by H. Chen, S. Chen, and Mattaeus [59], but their approach violated detailed balance, and
consequently the algorthm is subject to unphysical numerical instabilities. Unconditionally numer-
ically stable lattice-gas methods that obey the principle of detailed balance have also been found to
set g = 1 [5, 39].

For lattice-gas systems with low viscosity [102], it is appropriate to consider two separate ef-
fective field theories for short-time and long-time hydrodynamic behavior. The short and long
hydrodynamic time scales are denoted by t1 and t2, respectively. A multi-scale formalism is used
where ∂t −→ ∂t1 + ∂t2 [3]. Then the effective field theory defined by the continuity equation Equa-
tion (2.43) and the Navier-Stokes equation Equation (2.45) reduces at the short-time hydrodynamic
scale to the following set

∂t1ρ + ∂i(ρvi) = 0 (2.52)

∂t1(ρvi) = −∂jP. (2.53)

This set models sound wave propagation induced by pressure gradients in a compressible fluid. At
the long-time hydrodynamics scale, Equations (2.43) and (2.45) reduce to

∂t2ρ = 0 (2.54)

∂t2(ρvi) + ∂j(gρvivj) = η∂2vi +
(

ζ +
η

D

)

∂i∂jvj . (2.55)

This set of equations describes viscous damping and convection for a compressible fluid.
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Chapter 3

A One-Dimensional Model with

Conserved Mass and Momentum

3.1 Microscopic Rules

Let us consider the simplest lattice-gas model of a one-dimensional fluid with two conserved
quantities. This is called the 1D3Px lattice-gas model. This model was first studied by Qian in 1990
[103]. The lattice gas is one dimensional and has three bits per site, a rest particle with mass two
and speed ±1 particles with mass one. The mass and momentum at a lattice site is

m = 2n0 + n1 + n2 and px = n1 − n2. (3.1)

m = 2
head-on                 rest

Figure 3.1: Head-on collision in the 1D3Px lattice-gas model. The single equivalence class has m = 2 and px = 0.

There are two local configurations both with m = 2 and px = 0: (1) {n0, n1, n2} = {1, 0, 0} and
(2) {n0, n1, n2} = {0, 1, 1}. These two configurations are members of the only collision set (which is
called an equivalence class). An equivalence class has two or more members. Figure 3.1 illustrates
the equivalence class of the 1D3Px model. Its two elements are the configuration of two head-on
particles {011} and the configuration with a single rest particle {100}.

Because the total number of particles and the total momentum must be conserved, the collision
part of the dynamics can only permute the local configurations. The collision equation, which is
applied homogeneously across the lattice, can be expressed in terms of a mapping function, U , as
follows

s′ = U(s), (3.2)

where U maps 2B configurations to 2B new configurations. For the simple 1D3Px lattice, U is

U({011}) = {100}
U({100}) = {011}.

If a configuration s is not a member of an equivalence class, then U(s) = s. In other words, if the
incoming state is not a member of an equivalence class, then the outgoing state is set equal to the
incoming state. To speed up a lattice-gas simulation, the mapping function, U , may be precomputed
before the simulation and accessed in lookup table fashion during the simulation.

23
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In a computer implementation, it is convenient to use two arrays to simultaneously store the
states s and s′. Therefore, in Equation (3.2), data in the array that stores the “incoming” state, s,
is transformed by the action of the lookup table U (which is applied homogeneously over the entire
array) and the output is written into the next array to store the new “outgoing” state, s′.

It is conventional to write the collision rule in terms of the occupation variables, na = 1 or 0,
which are Boolean values. The collision rule, expressed for an individual local state, is written

n′
a(~x, t) = na(~x, t) + Ωa(n∗), (3.3)

where the collision term Ωa(n∗) = ±1 or 0. Writing Ωa(n∗) with an asterisk subscript on n∗ denotes
that the collision term for the ath local state depends on all the on-site local states. It is conventional
to write the streaming rule in terms of na also

na(~x + `êa, t + τ) = n′
a(~x, t). (3.4)

Combining Equations (3.3) and (3.4), the microscopic transport equation is therefore

na(~x + `êa, t + τ) = na(~x, t) + Ωa(n∗). (3.5)

For the 1D3Px model, the lattice vectors are ê0 = ~0, ê1 = x̂, and ê2 = −x̂, and the collision term is
specified by the single function

Ω = n1 n2 (1 − n0) − n0 (1 − n1)(1 − n2). (3.6)

where Ω0 = Ω, and Ω1,2 = −Ω. Then explicitly for the 1D3Px model, the microscopic transport
equation Equation (3.5) is

n0(x, t + τ) = n0(x, t) + Ω(x, t) (3.7)

n1,2(x ± `, t + τ) = n1,2(x, t) − Ω(x, t).

Successive snap shots of the microscopic time evolution of a small classical lattice-gas system on
a one-dimensional linear grid with 1024 sites is shown in Figure 3.2. The particles (which look like
lines on a barcode) are rendered in black on the right side of the diagram. Each cell comprises 3 local
states and hence each cell can hold up to 3 particles. Bit 0 encodes the m = 2 “rest” particle state,
and bits 1 and 2 encodes states with m = 1 particles moving with speed +1 and -1, respectively.
Initially, at t = 0, most of the particles reside on the left half of the lattice and successive snapshots
are shown at every 128 time steps. A spatial coarse-grain average, with block size of 128, is used to
determine the “mass density field”; the total mass per site is plotted on the left side of the figure.
The initial state, rendered in red, is a sinusoidal perturbation with a background density of ρ = 1

4
and an amplitude of δρ = 1

5 . (The magnitude of δρ is exaggerated here for pedagogical purposes; it
is usually a few percent of the background density.) At t = 640, the situation is reversed as most
of the particles have moved to local states on the right half of the lattice. The final mass density
waveform is rendered in blue. Each microscopic configuration of particles rendered in this figure
corresponds to a unique state of the lattice-gas system. Even though this is a small system with
only 1024 lattice sites, the total number of unique states available is still an extremely large number,
23072. The sound speed is clearly less than unity, because for the wave to move halfway cross the
grid, 512 lattice units, it takes over 640 time steps.

3.2 Model Analysis

A lattice Boltzmann equation describes the dynamics of the 1D3Px lattice-gas system at the
mesoscopic scale. The mesoscopic average of the occupation variable, na(~x, t), is the probability of
occupancy

fa(~x, t) ≡ 〈na(~x, t)〉. (3.8)
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Figure 3.2: Successive snapshots of the microscopic state of a classical 1D3Px lattice-gas system with a small
grid of V = 1024` sites. The six plots on the right show the individual particle occupancies of the microscopic
state at time step intervals of 128τ . The three local states per site of the 1D3Px model are plotted in the vertical,
respectively labeled bits 0, 1, and 2. A black line marked on a local state indicates that that local state is occupied
by a single particle. The profiles on the left show the mass density obtained by coarse-grain averaging over blocks of
128 microscopic cells (i.e. total mass of all particles in a block divided by the block size). On the upper left plot, the
red sinusoid is the initial profile at t = 0τ and subsequent profiles at t = 128τ and t = 256τ are overplotted. On the
lower left plot, the profiles at t = 384, 512, and 640τ are shown. The final sinusoid occurring at t = 640τ is rendered
in blue.

Here, the angled brackets around a microscopic quantity denote its mesoscopic expectation value
obtained by ensemble averaging. The kinetic transport equations are

f0(x, t + τ) = f0(x, t) + 〈Ω(x, t)〉 (3.9)

f1,2(x ± `, t + τ) = f1,2(x, t) − 〈Ω(x, t)〉.

To carry out a classical lattice-gas simulation at the mesoscopic scale, we can approximate Ωmeso(x, t) ≡
〈Ω(x, t)〉 by a mean-field collision term, denoted Ωmf(x, t), that neglect particle-particle correlations

〈Ω(x, t)〉 ' Ωmf(x, t) = f1 f2 (1 − f0) − f0 (1 − f1)(1 − f2). (3.10)

A statement of detailed balance can be written by setting the mean-field value of the collision term,
Equation (3.10), to zero at equilibrium

〈Ω〉 ' Ωmf(f eq

∗ ) = 0. (3.11)

Therefore, the probability of occupancies satisfies the following equation

f eq

0 =
f eq

1 f eq

2

f eq

1 f eq

2 + (1 − f eq

1 )(1 − f eq

2 )
. (3.12)

This equation, along with equations for the mass and momentum densities

ρ◦ = 2f eq

0 + f eq

1 + f eq

2 and ux◦ = f eq

1 − f eq

2 , (3.13)

gives us a nonlinear system of three equations in five unknowns, f eq

0 , f eq

1 , f eq

2 , ρ◦, and ux◦. Hence, it
is possible to analytically solve for the occupation probabilities, f eq

0 , f eq

1 , and f eq

2 , in terms of ρ◦ and
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Figure 3.3: A bounding polytope for the 1D3Px lattice gas is plotted in the upper left corner (here the mass on
the x-axis is in units of the individual particle mass, denoted m). The other plots are the computed equilibrium
probability occupancies. The units for momentum on all the plots are m `

τ
.
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ux◦. The resulting functions are plotted in Figure 3.3. The shaded region region in the upper left plot
gives the allowable values for mass and momentum for the 1D3Px lattice-model. The equilibrium
probability of occupancy of the rest particle, f eq

0 , and the speed ±1 moving particle states, f eq

1 and
f eq

2 , can be analytically determined for the 1D3Px model. The results are plotted for a range of
masses from m = 0.5 up to m = 3.5. The particle-hole symmetry about half-filling (m = 2) of this
lattice-gas model is apparent in Figure 3.3 (for example, the m = 0.5 plot is identically inverted from
the m = 3.5 plot). f eq

0 is concave downward below half-filling and concave upward above half-filling.
Furthermore, below half-filling, f eq

1 monotonically increases with increasing momentum while f eq

2

monotonically decreases. The situation is reversed above half-filling, as expected.
When the system is at rest at equilibrium, px = 0, then f eq

1 = f eq

2 = d and the probability of
occupancy for the rest particle state is

f eq

0 =
d2

1 − 2d + 2d2
. (3.14)

Using Equation (3.10), then the Jacobian of the collision, Jab ≡ ∂Ωmf
a

∂fb

∣
∣
∣
feq

, is

J =






−1 + 2d − 2d2 (1−d)d
1−2d+2d2

(1−d)d
1−2d+2d2

1 − 2d + 2d2 (d−1)d
1−2d+2d2

(d−1)d
1−2d+2d2

1 − 2d + 2d2 (d−1)d
1−2d+2d2

(d−1)d
1−2d+2d2




 (3.15)

The eigenvectors of J are

|1〉 = (2, 1, 1) (3.16)

|2〉 = (0, 1, −1) (3.17)

|3〉 =

(
(1 − 2d + 2d2)2

d(d − 1)
, 1, 1

)

. (3.18)

The eigenvectors |1〉 and |2〉, corresponding to mass and momentum, span a two-dimensional hy-
drodynamic subspace. The remaining eigenvector, |3〉, is a kinetic eigenvector, which in this case is
density dependent. The eigenvalues of J are

λ1 = 0 (3.19)

λ2 = 0 (3.20)

λ3 =
1 − 2d + 6d2 − 8d3 + 4d4

−1 + 2d − 2d2
. (3.21)

Now using the lattice vectors, ê0 = 0, ê1 = 1, and ê2 = −1, and the expression for J given in
Equation (3.15), setting the determinant the linearized lattice-Boltzmann equation equal to zero

∣
∣
∣

(

ei(`sêa·~k+ωτ) − 1
)

1 − J
∣
∣
∣ = 0 (3.22)

allows us to solve to the dispersion relations for the system. Taking ` = τ = 1, we get the following
dispersion relation

(1 − 2d + 2d2)e3ω − 2[d − 3d2 + 4d3 − 2d4 + (1 − 3d + 3d2) cos k]e2ω+ (3.23)

(1 − 2d)2[1 + 2d(d − 1) cos k]eω + 4d2(d − 1)2 = 0. (3.24)

This is a cubic equation in eω, and it is analytically solvable. The only hydrodynamic mode is a
damped sound wave, as expected. Plots of the dispersion relation for various background densities
are given in Figure 3.4.

Real and imaginary parts of the dispersion relations for the 1D3Px lattice-gas model, shown
respectively on the left and right hand sides of the Figure 3.4. The real part of the dispersion
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Figure 3.4: The real and imaginary parts of the dispersion relations for the 1D3Px lattice gas for a range of
background densities from d = 0.05 to d = 0.2.
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relations indicates a sound mode (<(ω) → ±csk as k → 0). The imaginary part of the dispersion
relation for the hydrodynamic mode is parabolic for small wavenumber, indicating viscous damping
of the sound mode (=(ω) → Γk2 as k → 0). Remarkably, the sound damping constant, Γ, approaches
zero as the background mass density approaches zero. That is, low-mass density waves can oscillate
without viscous damping. This behavior is observed in numerical simulations of the 1D3Px model.
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Figure 3.5: Real part of the dispersion relation for the mesoscopic 1D3Px lattice gas in the long wavelength limit
and mean-field limit at a reduced background density of d = 0.214286.

The real part of the dispersion relation for the sound mode for the 1D3Px lattice-gas model set
with a background density of d = 6

4V , with V = 7, is shown in Figure 3.5. The real part of the

dispersion relation indicates a sound mode (<(ω) → ±csk as k → 0 where cs = 0.74 `
τ ). The data

points, plotted as black circles, are solutions to the linearized Boltzmann equation in the mean-field
limit. The solid red curves, with slope of ±cs, are numerical linear fits to the data. The imaginary
part of the dispersion relation for the sound mode for the 1D3Px lattice-gas model is shown in
Figure 3.6. The imaginary part of the dispersion relation indicates sound damping (=(ω) → iΓk2 as

k → 0 where Γ = 0.08 `2

τ . The solid red parabola is a numerical fit to the data in the region of small
k < 1. The calculations shown in Figures 3.5 and 3.6 were done with a mass density filling fraction
of d◦ = 6

4V = 0.214, where a small system size of V = 7 is used. In this case, k = 2π
V = 0.898.

3.3 Comparing Analytical and Numerical Predictions

A time history of the mass density wave for a small system with V = 7 sites is shown in Figure 3.7.
The exponential envelope over plotted in red analytically determined by an analysis of the linearized
lattice Boltzmann equation in the mean-field limit (see Figure 3.6). The predicted sound damping
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Figure 3.6: The imaginary part of the dispersion relation for the mesoscopic 1D3Px lattice gas in the long
wavelength limit and mean-field limit at a reduced background density of d = 0.214286.
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Figure 3.7: Damping of a mass density wave for a system with V − 7 sites in the classical 1D3Px model simulated
using a mesoscopic Boltzmann equation with the collision term expressed in the mean-field approximation. The
background density is d◦ = 6

4V
= 0.214. The ordinate is the absolute value of the amplitude of mass-density wave

divided by the peak amplitude of the initial perturbation.
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constant, Γ = 0.08 `2

τ is in excellent agreement with the simulation data.
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Figure 3.8: Damping of a mass density wave at multiple scales in the classical 1D3Px model simulated using a
mesoscopic Boltzmann equation with the collision term expressed in the mean-field approximation. The abscissa is
plotted in units of τ and the ordinate is plotted as the absolute value of the amplitude of mass-density wave divided
by the peak amplitude of the initial perturbation.

Damping of mass density waves in the classical 1D3Px lattice gas for different system sizes,
V = 2, 3, 4, 5, 8 and 16 is shown in Figure 3.8. The simulation is initialized with a sinusoidal
perturbation of δρ = 0.04 from a uniform background mass density at half-filling, ρ = 2. So the
fractional mass density variation is initially one part in fifty. The wavelength equals the system
size. Plotted is the time history of the resulting standing wave. The peak amplitude decays in time
because of viscous damping. The circles are data taken from classical mesoscopic simulations, using
a mean-field collision operator. The solid blue curve is a nonlinear numerical fit to the data using
an exponentially damped sinusoid e− t

τ cos ωt with free parameters for the angular frequency, ω, and
the damping constant, τ . The dotted blue curve is the envelope of the damped curve. For system
sizes as small as V = 3, the oscillations are clearly apparent. Even in the smallest possible system
only with two sites, V = 2, oscillations are discernable, and the data agrees with an exponentially
damped sinusoid. This is an example of “fluid-like” behavior occurring in systems far below from
the continuum limit.

Plotted in Figure 3.9 is damping time constants of mass density waves in the classical 1D3Px
lattice gas for different system sizes from V = 2 up to V = 256. The log-log plot shows the power-law
behavior, known as diffusive ordering, typical of lattice-gas system in the viscous regime. The power
law in this case is T = 0.44V 2, which is parabolic. Each circle is determined from a mesoscopic scale
simulation that initialized with a sinusoidal perturbation of δρ = 0.04 from a uniform background

mass density at half-filling, ρ = 2. The damping constant, Γ = `2

T , is determined from the envelope

of the resulting standing wave e− t
T cos ωt (see Figure 3.8). The mean-field estimates of the damping

time constant are the circles. The solid blue line is a linear best fit to these estimates. The estimated
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Figure 3.9: Diffusive ordering in the classical 1D3Px model computing at the mesoscopic scale using the mean-field
approximation.

damping constant deviates only slightly from power-law behavior at the smallest system sizes. The
inset plot is a linear plot of the data for V ≤ 16 and the solid-blue parabola is the same diffusive-
ordering power-law in the larger log-log plot.



Chapter 4

A Two-Dimensional Model with

Conserved Mass and Momentum

4.1 Microscopic Rules

In the two-dimensional lattice gas on a triangular lattice (B = 6) there are 9 equivalence classes:

• a three member equivalence class for the 2-body head-on collisions ~p = 0 ;

• a two member equivalence class for the symmetric 3-body collisions with ~p = 0;

• six two member equivalence classes for 2-body head-on collisions with a spectator particle (or
3-body asymmetric collisions) with momentum ~p = mcêa; and, finally,

• a three member equivalence class for the 4-body collision with ~p = 0, which is the particle-hole
counterpart of the 2-body equivalence class.

The equivalence classes are illustrated in Figure 4.1. The first two are the equivalence classes used in
the FHP model [2]. There are three conserved quantities for this two-dimensional system: the mass,
and two components of the momentum.1 Energy is also conserved, but this is degenerate with the
mass since the particles move at unit speed. The FHP model does not use the other 7 equivalence
classes, even though adding them in takes no extra computational or analytical work.

Let the incoming configuration at a spacetime coordinate (~x, t) be denoted by the set s(~x, t) =
{n1(~x, t), n2(~x, t), . . . , nB(~x, t)}. After the collision step, the outgoing configuration is denoted
s′(~x, t) = {n′

1(~x, t), n′
2(~x, t), . . . , n′

B(~x, t)}. Taking B = 6 for example, a 3-body collision can have
an incoming configuration

{1 0 1 0 1 0}
and an outgoing configuration

{0 1 0 1 0 1},

or vice versa. In the case of a 2-body collision, if the incoming configuration is

{1 0 0 1 0 0},

then the outgoing configuration could be either

{0 1 0 0 1 0} or {0 0 1 0 0 1}.

1 If we use only the 2-body collisions in Figure 4.1, then there is would be additional conserved quantity (the
difference in the particle number along each of the three lattice directions give three conserved momenta instead of
two). So there would be a spurious invariant. Consequently, the symmetric 3-body collisions in Figure 4.1 are needed
in the FHP-model to remove this spurious invariant [2].

33
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Figure 4.1: Successive snap shots of the time evolution of a small classical lattice-gas system on a two-dimensional
8 × 8 triangular grid. The particles are rendered in red and the underlying hexagonal cells of the Bravais lattice are
rendered in blue. Each hexagonal cell comprises 6 local states and hence each cell can hold up to 6 particles. There
are nine collision sets, called equivalence classes. The first three head-on m = 2 collisions and two symmetric m = 3
collisions, shown in the red box, constitute the FHP lattice-gas model. (Viscous dissipation can be reduced if the
m = 3 asymmetric collisions and the m = 4 collisions are used, but they are not necessary.) Initially, at t = 0, most
of the particles reside on the left half of the lattice. (The sinusoidal profile across the lattice is highly exaggerated
for display purposes, so the system is very far from local equilibrium.) After a few time steps, at t = 5, the situation
is reversed as most of the particles have moved to local states on the right half of the lattice. Each configuration of
particles rendered in this figure corresponds to a unique state of the lattice-gas system. Even though this is a small
system with only 64 lattice sites, the total number of unique states available is still a rather large number, 2384. The
CAM-8, our fastest lattice-gas computer, which can update 25 million sites per second, would have to run for over
10100 years to enumerate every possible state of this small 8 × 8 example.
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The collision part of the classical dynamics permutes the particles locally because the total number
of particles and the total momentum must be conserved. The collision equation, which is applied
homogeneously across the lattice, is the following

s′ = U(s),

where U is a 64 element lookup table defined by

U({100100}) = α{010010} + (1 − α){001001}
U({010010}) = α{001001} + (1 − α){100100}
U({001001}) = α{100100} + (1 − α){010010}
U({101010}) = {010101}
U({010010}) = {101010},

where the α ∈ {0, 1} is chosen uniformly randomly. If a configuration s is not a member of the
either the 2-body or the 3-body FHP equivalence classes, then U(s) = s. In other words, if the
incoming state is not a member of an equivalence class, which has two or more members, then the
outgoing state is set equal to the incoming state. Some fluid simulation examples of the FHP model
are shown in Figures 4.2 and 4.3.

Figure 4.2: Classical lattice gas fluid simulation with a lattice size of 4096 × 2048 done on the CAM-8 using about
10 million particles. Momentum and vorticity fields display a Von Karman Street. Coarse-gain averaging was done
over 50 time steps, using a 64 × 64 spatial block size for the momentum field, and a 16 × 16 spatial block size for the
vorticity field. Red indicates clockwise vorticity and blue counter clockwise vorticity. The system was initialized with
a reduced mass density of d = 1/7. The system was at rest at t = 0, and was accelerated to the right by external
forcing resulting in a terminal flow velocity of v = 0.3c at t = 20, 000, shown in this figure. The diameter of the
cylindrical obstacle is 256` lattice units. The critical Reynolds number for vortex shedding, Re = 42, was achieve at
approximately t = 10, 000 time steps into the simulation. The maximum Reynolds number achieved in simulation is
about Re ∼ 250.

4.2 Model Analysis

The FHP collision term is
ΩFHP

a ≡ Ωm=2,~p=0
a + Ωm=3,~p=0

a . (4.1)

The two-body term is

Ωm=2,~p=0
a = αna+1na+4(1 − na)(1 − na+2)(1 − na+3)(1 − na+5)
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Figure 4.3: Classical lattice-gas fluid simulation with about 10 million particles computed on the CAM-8. Vorticity
and momentum fields of the two-dimensional shear instability are shown. The simulation was done using a lattice size
of 4096 × 2048 with toroidal boundary conditions, with spacetime averaging over 128x128 blocks for 50 time steps.
FHP collisions with spectators and a rest particle were implemented. Macroscopic scale data is presented at 0, 10000,
and 30000 time steps, which is at a Reynolds number of approximately Re ∼ 1000.
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+ (1 − α)na+2na+5(1 − na)(1 − na+1)(1 − na+3)(1 − na+4)

− nana+3(1 − na+1)(1 − na+2)(1 − na+4)(1 − na+5), (4.2)

where α ∈ {0, 1} is chosen uniformly randomly and and the symmetric 3-body term is

Ωm=3,~p=0
a = na+1na+3na+5(1 − na)(1 − na+2)(1 − na+4)

− nana+2na+4(1 − na+1)(1 − na+3)(1 − na+5). (4.3)

The indices are taken modulo B. Writing ΩFHP
a (n∗) with and asterisk subscript on n∗ denotes that

the collision term for the ath local state depends on all the on-site local states.

The Jacobian of the mesoscopic mean-field collision term for the FHP lattice gas is a circulant
matrix2

JFHP =










−d(1−d)2 1
2 d(1+d)(1−d)2 1

2 d(1−3d)(1−d)2 −d(1−2d)(1−d)2 1
2 d(1−3d)(1−d)2 1

2 d(1+d)(1−d)2

1
2 d(1+d)(1−d)2 −d(1−d)2 1

2 d(1+d)(1−d)2 1
2 d(1−3d)(1−d)2 −d(1−2d)(1−d)2 1

2 d(1−3d)(1−d)2

1
2 d(1−3d)(1−d)2 1

2 d(1+d)(1−d)2 −d(1−d)2 1
2 d(1+d)(1−d)2 1

2 d(1−3d)(1−d)2 −d(1−2d)(1−d)2

−d(1−2d)(1−d)2 1
2 d(1−3d)(1−d)2 1

2 d(1+d)(1−d)2 −d(1−d)2 1
2 d(1+d)(1−d)2 1

2 d(1−3d)(1−d)2

1
2 d(1−3d)(1−d)2 −d(1−2d)(1−d)2 1

2 d(1−3d)(1−d)2 1
2 d(1+d)(1−d)2 −d(1−d)2 1

2 d(1+d)(1−d)2

1
2 d(1+d)(1−d)2 1

2 d(1−3d)(1−d)2 −d(1−2d)(1−d)2 1
2 d(1−3d)(1−d)2 1

2 d(1+d)(1−d)2 −d(1−d)2
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Figure 4.4: Dispersion relations for the FHP lattice gas for ~k along the x̂-axis direction, ω = ω(ρ, kx) at a
background density of ρ = 2.5. The real part of ω(kx), plotted on the left, indicates propagating modes, and the
imaginary part of ω(kx), plotted on the right, indicates two damped soft excitations with parabolic dispersion relations
at kx ∼ 0 and spurious modes at finite kx. The periodicity of the reciprocal lattice is observed in this numerical
solution, for example inversion symmetry ω(−~k) = ω(~k).

For the FHP lattice gas there are three soft modes, one corresponding to conservation mass and
two corresponding to the two conserved components of momentum. The kinetic modes which are
nonvanishing at first order cause damping in the lattice gas and are attributed to a positive imaginary
part of ω, (Im(ω) > 0). There are three hard modes corresponding the transport coefficients of the
bulk, shear, and cubic viscosities, and in the long wavelength limit, the shear and cubic viscosities
coincide for an isotropic fluid.

2 It is sometimes possible to go beyond this Boltzmann approximation to determine a more accurate form of J
by accounting for the particle-particle correlations, which arise from on-site collisions at the microscopic scale. This
is called renormalization, and it which give rise to corrections the Boltzmann estimates of the transport coefficients.
Renormalization theory for lattice gases has been worked out by Ernst et al. [29, 31] and by Boghosian [88] who has
developed diagrammatic expansion methods for determining a renormalized J . Various approximations to sum terms
involving higher and higher order particle-particle correlations, including the ring collisions for example, in certain
cases are necessary to correctly estimate the value of the transport coefficients of a lattice-gas system. However, the
renormalization of J is not necessary for single-speed lattice gases where the Boltzmann estimates are quite accurate.
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Figures 4.5 shows a smaller region of the k-space within the first Brillouin zone of the reciprocal
lattice where the long wavelength behavior of the system is apparent. A sound mode is observed in
the real part of ω. For ~k along x and y-axis, the dispersion relation in the long wavelength limit
predicts a sound speed of cs = c√

2
, which agrees with the numerical measurements. Since cs is the

same when the wave vector is aligned with either the x or y-axes, this indicates that the sound mode
is isotropic, see the L.H.S. of Figures 4.5 and 4.6. The imaginary part of ω is parabolic at ~k → 0.
This is characteristic of a viscous hydrodynamics regime with diffusive ordering, see the R.H.S. of
Figures 4.5 and 4.6. In the viscous hydrodynamic regime, the dispersion relations for sound mode
in the FHP lattice gas is found to be

ω(~k) = ±csk + iΓ(ρ)k2. (4.5)

Higher resolution plots of the dispersion curves, for a large range of background mass densities, are
shown in Figure 4.13. We numerically fit the shallowest mode with a parabola. This gives us a way
to determine the damping constant of compressional mass density waves. This result is given in
§4.3.3

0.2 0.4 0.6 0.8 1
Wave Number

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

R
e
A
n
g
u
l
a
r
F
r
e
q
u
e
n
c
y

0 0.2 0.4 0.6 0.8 1
Wave Number

0

0.1

0.2

0.3

I
m
A
n
g
u
l
a
r
F
r
e
q
u
e
n
c
y

Figure 4.5: Dispersion relations for the FHP lattice gas for ~k along the x̂-axis direction, ω = ω(ρ, kx) at a

background density of ρ = 2.5 and for kx ≤ 1. In the long wavelength limit (~k → 0), the real part of ω(kx), plotted on
the left, predicts a propagating excitation which is the sound mode with a linear dispersion relation <{ω(kx)} = ±cskx

with sound speed cs = 1√
2
. The imaginary part of ω(kx), plotted on the right, indicates two damped soft excitations

with parabolic dispersion relations at kx → 0. The lowest parabola indicates sound damping with the dispersion
relation, ={ω(kx)} = Γk2

x, which is plotted in more detail and for a range of densities in Figure 4.11.

Here we illustrate the identity (2.24)

J−1|eiej〉 =
1

κη
|eiej〉 (4.6)

using the well-known two-dimensional FHP lattice-gas model [2]. Using the x and y components of
êa =

(
cos πa

3 , sin πa
3

)
separately, we define the following two kets

|ex〉 ≡ 1

2
(1, −1, −2, −1, 1, 2)

|ey〉 ≡
√

3

2
(1, 1, 0, −1, −1, 0).

The direct product of |ei〉 and |ej〉 for (i, j) ∈ (x, y) component by component gives

|exey〉 =

√
3

4
(1, −1, 0, −1, 1, 0) (4.7)
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Figure 4.6: Dispersion relations for the FHP lattice gas for ~k along the ŷ-axis direction, ω = ω(ρ, ky) at a

background density of ρ = 2.5. In the long wavelength limit (~k → 0), the real part of ω(ky), plotted on the left, predicts
a propagating excitation which is the sound mode with a linear dispersion relation <{ω(ky)} = ±csky = cs2π 2√

3λ

with sound speed cs = 1√
2
. The factor of sin(π

3
) =

√
3

2
comes about because the triangular lattice’s cell size is

shorter than it is wide by this amount. The imaginary part of ω(kx), plotted on the right, indicates two damped soft
excitations with parabolic dispersion relations at kx → 0. The lowest parabola indicates sound damping with the
dispersion relation, ={ω(ky)} = Γk2

y . At ky → 0, this is identical to the dispersion relation with wave vector along
the x̂-axis indicating an isotropic sound mode.

|exex〉 =

√
1

4
(1, 1, 4, 1, 1, 4) (4.8)

|eyey〉 =

√
3

4
(1, 1, 0, 1, 1, 0). (4.9)

Following Wolfram [1], we take the basic approach that the eigenkets of the linearized collision
operator, which is the circulant matrix for the FHP model, have the form

|α〉 =










ei πα
3

−e−i πα
3

(−1)α

−ei πα
3

e−i πα
3

1










, (4.10)

for α = 1, 2, . . . , 6. We are free to define a new set of eigenkets by taking linear combinations of |α〉
so that we can express the eigenkets of JFHP in terms of the lattice kets |ex〉, |ey〉, |exex〉, |eyey〉,
and |exey〉. This is done as follows

|1′〉 = |6〉 = (1, 1, 1, 1, 1, 1) = |exex〉 + |eyey〉

|2′〉 =
1

i
√

3
(|1〉 − |5〉) = (1, 1, 0, −1, −1, 0) =

2√
3
|ey〉

|3′〉 = |1〉 + |5〉 = (1, −1, −2, −1, 1, 2) = 2|ex〉
|4′〉 = |2〉 − |4〉 = (1, 1, −2, 1, 1, −2) = 2(|eyey〉 − |exex〉)

|5′〉 =
1

i
√

3
(|2〉 + |4〉) = (1, −1, 0, 1, −1, 0) =

4√
3
|exey〉

|6′〉 = |3〉 = (−1, 1, −1, 1, −1, 1).

All the 〈α′| must be defined with the appropriate magnitude to satisfy the normality condition,
〈α′|α′〉 = 1 for all α′. The mean-field collision operator for the FHP lattice gas is simply obtained
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by replacing the na’s in Equation (4.1) with fa’s. Using this in the eigenvalue formula (2.18)

κα =

B∑

m=1

Jme2πimα/B , (4.11)

it follows that the eigenvalues of JFHP are

〈1′|JFHP|1′〉 = 0

〈2′|JFHP|2′〉 = 0

〈3′|JFHP|3′〉 = 0

〈4′|JFHP|4′〉 = −3d(1 − d)3

〈5′|JFHP|5′〉 = −3d(1 − d)3

〈6′|JFHP|6′〉 = 6d2(1 − d)2.

Note that 〈1′|JFHP|1′〉 corresponds to mass conservation, 〈2′|JFHP|2′〉 to y-momentum conservation,
and 〈3′|JFHP|3′〉 to x-momentum conservation. The degenerate viscous eigenvalue κη = −3d(1 − d)3

is immediately identified.
Using the eigenket of the kinetic subspace, we can compute the generalized inverse (JFHP)−1 as

follows

(JFHP)−1 = ( |4′〉 |5′〉 |6′〉 )
︸ ︷︷ ︸

(6×3 matrix)






1
κ4′

0 0

0 1
κ5′

0

0 0 1
κ6′










〈4′|
〈5′|
〈6′|





︸ ︷︷ ︸

(3×6 matrix)

. (4.12)

We have

(JFHP)−1 =















1+3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

−1+5 d

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2
1+3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

−1+5 d

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

1−3 d
36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1+3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

−1+5 d

36 (−1+d)3 d2

−1+5 d
36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1+3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

1−3 d
36 (−1+d)3 d2

−1+5 d

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1+3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2
1−3 d

36 (−1+d)3 d2

−1+5 d

36 (−1+d)3 d2

1−3 d

36 (−1+d)3 d2

−(1+d)

36 (−1+d)3 d2

1+3 d

36 (−1+d)3 d2















.

(4.13)
Note that (JFHP)−1JFHP 6= 1, since (JFHP)−1 is the generalized inverse of JFHP

(JFHP)−1JFHP =










1
2 − 1

3 0 1
6 0 − 1

3
− 1

3
1
2 − 1

3 0 1
6 0

0 − 1
3

1
2 − 1

3 0 1
6

1
6 0 − 1

3
1
2 − 1

3 0
0 1

6 0 − 1
3

1
2 − 1

3
− 1

3 0 1
6 0 − 1

3
1
2










. (4.14)

However, if we compute the matrix of elements, we see that J−1 is indeed the inverse of J in the
kinetic space

〈α′|(JFHP)−1JFHP|α′〉 =










0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1










. (4.15)
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Finally, we see that |exey〉 is an eigenvector of (JFHP)−1, with eigenvalue 1
κη

= −1
3d(1−d)3

(JFHP)−1|exey〉 =
−1

3d(1 − d)3
|exey〉. (4.16)

The Hénon’s shear viscosity formula (2.50) for a classical lattice gas is

η =
ρ`2s
τ

1

D + 2

(
1

κη
− 1

2

)

. (4.17)

Since κη = −3d(1 − d)3 for the FHP lattice gas, Equation (2.50) is

ηFHP = ρ
`2

τ

(
1

12d(1 − d)3
− 1

8

)

. (4.18)

4.3 Comparing Analytical and Numerical Predictions

4.3.1 Single-Particle Probability of Occupancy in the Subsonic Limit
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Figure 4.7: Theory versus simulation comparison of the velocity dependence of the single-particle distribution

function in the non-Galilean parameterization: fa = d + dDêa · ~v + gdD(D/2 + 1)Q̂a : ~v~v. FHP simulation data
is overplotted on this predicted mesoscopic probability of occupancy. Plots (a) and (b) are for reduced background
densities of d = .20 and d = 0.25, respectively. A velocity shift is imparted along the x-axis; that is, along the f1

direction indicated in the figure. Data was collected from a 128 × 128 classical FHP simulation (crosses) and was
coarse-grained averaged over 1600 time steps from time step t = 400 to t = 2000.

The general form of the single-particle occupancy probability, appropriate for single speed lattice
gases, is a Fermi-Dirac function whose argument is the sum of scalar collision invariants, αρ + βêa ·
~p + γE [3]

f eq

a =
1

1 + eαρ+βêa·~p+γE
. (4.19)

Fundamentally, this arises because the individual classical bits representing particles satisfy a Pauli
exclusion principle. By Taylor expanding (4.19) about ~v = 0 to fourth order in the velocity and
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equating the zeroth, first, and second moments of fa respectively, the parameters α and β are
determined [3]. The result of the low Mach number expansion of f eq

a is

(f eq

a )
ideal

=
n

B
+

nD

cB
eaivi + g

nD(D + 2)

2c2B
eaieajvivj − g

n(D + 2)

2c2B
v2 + O(M3), (4.20)

where the density dependent Galilean prefactor is

g(d) =
D

D + 2

1 − 2d

1 − d
. (4.21)

The predicted functional form (4.20) is checked in the subsonic limit against numerical data taken
from a simulation of a classical FHP lattice gas. The analytical and numerical results are in excellent
agreement and are shown in Figure 4.7.

Using ρ = mn for the density and cs = c√
D

for the sound speed, the moments of lattice gas

distribution are

m
∑

a

(feq
a )

ideal
= ρ (4.22)

mc
∑

a

eai (feq
a )

ideal
= ρvi (4.23)

mc2
∑

a

eaieaj (feq
a )

ideal
= ρc2

s(1 − g
v2

c2
)δij + gρvivj . (4.24)

Note that for a uniform filling of states, fa = d for all directions and so ~v = 0, then3

ρ(~x, t) = mBd (4.25)

vi(~x, t) = 0 (4.26)

Πij(~x, t) = ρc2
sδij . (4.27)

This is expected since when vi = 0, the momentum flux density tensor is diagonal and scales with
the pressure (Πij = Pδij) and for an ideal gas P = ρc2

s.

4.3.2 Measuring the Shear Viscosity Using the Decay of a Sinusoidal Shear
Wave

Given a sinusoidal perturbation of wavelength λ of a fluid one can straightforwardly measure
the time for relaxation to an equilibrium state where the fluid is at rest. This method was used to
measure the shear viscosity of the FCHC lattice gas by Adler et al. [22]. The relevant part of the
Navier-Stokes equation is the time dependent term and the momentum diffusion term

(∂t − ν∂2
y)px = 0. (4.28)

This has the solution
px = po sin(ky)e−k2νt. (4.29)

Therefore, the decay rate, k2ν, can be measured to determine ν since k = 2π
λ is known. This method

is easier to implement on the CAM-8 than the square-wave forcing method used by Kadanoff, McNa-
mara, and Zanetti [20], since no forcing bits or rules are required and it is easy to generate an initial
random fluid pattern with a sinusoidal perturbation. Very good agreement is found between the
mean-field prediction of the kinematic shear viscosity and the numerical data shown in Figure 4.10
taken on the CAM-8 for the FHP lattice gas.

3 We used the following property of the displacement vectors,
∑

a
êa = 0 and

∑

a
eaieaj = B

D
δij , that was

originally derived by Wolfram [1]
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Figure 4.8: A depiction of an intial sinusoidal shear wave perturbation that decays over time to a final state with
a smaller amplitude.
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Figure 4.9: Plot of the amplitude of a shear wave versus time. The amplitude of shear wave of the momentum
density field decays exponentially as is shown here on a log-linear plot. Linear regression is used to fit the data set
and the predicted the decay exponent, which is proportional to the kinematic shear viscosity of the lattice-gas fluid.
Data is taken from a 512 × 512 classical FHP simulation at a background density of d◦ = 0.15.
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Figure 4.10: Kinematic viscosity versus density obtained by measuring the rate of exponential damping of a
sinusoidal velocity perturbation. The theoretical mean-field prediction and numerical data are plotted for an FHP
lattice gas with 2 and 3-body collisions on a two dimensional triangular lattice. Simulation runs were done on the
CAM-8 on a 512 × 512 periodic space.
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4.3.3 Measuring the Bulk Viscosity Using the Decay of a Sinusoidal Compres-
sional Wave

In the viscous hydrodynamic regime, the dispersion relations for sound mode in the FHP lattice
gas has the form

ω(~k) = ±csk + iΓ(ρ)k2.

We can determine the damping constant by solving for the roots of the secular determinant of the
linearized Boltzmann equation in k-space. Our predicted value of the damping constant are gotten
by a numerical fitting procedure shown in Figure 4.11. In this case, the analysis was carried out
with the wave vector of the density perturbation aligned with the x-axis of the Bravais lattice. The
procedure was repeated for a density perturbation along the y-axis, and the same result was obtained.
This indicates that the sound mode of the FHP lattice gas is isotropic in the long wavelength limit
where diffusive ordering holds.
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Figure 4.11: Imaginary part of the dispersion relation, ω = ω(ρ, kx)}, for the FHP lattice gas. The wave vector is

directed along the x̂-axis, ~k = kxx̂, and the results are plotted for a range of background densities from ρ◦ = 0.6 to
ρ = 3. The lowest curves are numerically fit with a parabola, which are plotted in red. Since the dispersion relation
is ={ω(ky)} = Γk2

x in the long wavelength limit, we can predict the damping constant as a function of mass density,
Γ = Γ(ρ). This analytical prediction of Γ(ρ) agrees well with data from numerical measurements taken from the
lattice-gas simulation. See Figure 4.13.
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Figure 4.12: Sound wave density oscillations, depicted in blue, measured from classical FHP lattice-gas simulations
carried out for a range of reduced background densities, d = 0.15 to d = 0.65. Initially, the density field has a
sinusoidal perturbation of size λ = 256 with an amplitude of δd = 0.1 and with its wave vector directed along the x̂-
axis, ~k = (k, 0). The simulation was carried out on a 256×256 triangular lattice for t = 3000 time steps, and data was

sampled at every other time step. The amplitude of the sound wave decays exponentially fast, δρ = δρ◦eikcst−k2
Γt,

where the wave number is k = 2π
λ

and the sound speed is cs = `

τ
√

2
. The damping constant, Γ, is determined by a

numerical fit to the envelope of the oscillation, and the resulting exponential curve is overplotted in red.
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The time evolution of a sinusoidal mass density perturbation of wavelength λ = 256 in a 256
size system (with periodic boundary conditions imposed) was simulated with a microscopic FHP
lattice gas. To measure the damping constant, the simulation was run for 3000 time steps and the
amplitude of the resulting compressional standing wave was record. The time series data is plotted
in Figure 4.12 for a range of background densities. The envelope of the oscillation is a decaying
exponential curve. This decay constant is −k2Γ(ρ). In this way, numerical fitting allows us to
determine the sound damping constant, Γ(ρ), as a function of mass density. The numerical results
measured from an FHP lattice-gas simulation are compared with Boltzmann predictions for a range
of reduced density from d = 0.15 to 0.75. The comparison is shown in Figure 4.13. The agreement
between simulation and theory is good.
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Figure 4.13: Comparison of theory versus simulation for the classical FHP lattice gas. The analytical curve
(plotted in red) is calculated from a detailed analysis of the linearized Boltzmann equation. The sound damping
constant is predicted in the long wavelength limit as is shown in Figure 4.11. The numerical data (plotted as circles)
is calculated from an FHP lattice-gas simulation using the method of relaxation of a mass density field standing wave
as is shown in Figure 4.12. The two methods of determining the coefficient of sound damping are in good agreement.

The constancy of the sound speed was also using the data taken from the compressional wave test.
It appears that cs for the microscopic FHP lattice gas is independent of density. See Figure 4.14.
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Figure 4.14: Plot of the power spectrum, ρ∗
kρk, computed using the discrete Fourier transform of a mass density

field standing wave for a range of reduced background densities from d = 0.15 to d = 0.7. Measurements were taken
from classical FHP lattice-gas simulations on a 256×256 grid. The size of the standing wave is λ = 256 and it oscillates
and decays over time (see Figure 4.12). The peak in the power spectrum occurs at the same location corresponding
to a density-independent sound speed.



Chapter 5

Conclusion

We have presented a review of the classical lattice-gas method that included a description of how
one may analytically predict certain fluid-like behaviors in the long wavelength limit. We have
also included a description of two lattice-gas models using one and two-dimensional lattices as
examples. A linearized lattice-Boltzmann equation at the mesoscopic scale is used to calculate the
dispersion relations for the sound mode and shear and bulk viscosity modes of the dynamical lattice-
gas system. For small wave numbers, these dispersion relations are compared to numerical data
taken from both large-scale and slow modes present in the two lattice-gas models. Numerical and
analytical predictions of the sound damping constant and sound speed are in agreement and diffusive
ordering of damping times versus grid size is observed in this context. Furthermore, numerical and
analytical predictions for the shear and bulk viscosities for the two-dimensional lattice-gas system
were compared and are in good agreement as well.

The numerical efficiency and convergence properties of the lattice-gas algorithm are not reported
in the chapters covering the numerical simulations. Therefore, it is important to state here that
the computational efficiency and the order of convergence of the lattice-gas algorithm implemented
on classical general-purpose computers is much lower than that achievable by computational fluid
dynamics codes implemented on the same general-purpose computers using high-level languages
based on floating-point representations of real valued quantities. A significant speed-up of the
lattice-gas algorithm can be achieved using simple special-purpose computers [104, 105]. However,
the gains are not sufficient to warrant the continued construction of these special-purpose classical
computers, except perhaps for use in the narrowly defined application area of the computational
fluid dynamics of multispecies and multiphase lattice-gas systems and for use in understanding the
extent to which reversible algorithms (a special case of unitary algorithms) applied over massively
large data sets can be used for physical modeling purposes.
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Appendix A

Small Mach Number Expansion of

the Occupancy Probability

The single-particle distribution function has the form

f(za) =
1

za + 1
, (A.1)

where the natural log of the fugacity

ln za = αρ + βêa · ~p + γE (A.2)

is a linear combination of the conserved scalar quantities, the mass ρ,the momentum component
êa ·~p along the lattice direction êa, and the energy E at a lattice site. The real numbered coefficients
α, β, and γ are free parameters that we will determine. It is convenient to define the momentum
and energy independent part of the fugacity as

z◦ ≡ eαρ. (A.3)

Since fa(z◦) = d is the reduced density, d ≡ ρ
mB , we must set

z◦ =
1 − d

d
. (A.4)

This fixes the coefficient α. To fix the coefficients β and γ, we can specify two moments of the
single-particle distribution function as constraint conditions. We begin by Taylor expanding the
single-particle distribution function f(za) about z◦

f(za) = d + f ′(z◦)δz +
1

2
f ′′(z◦)(δz

2) + · · · . (A.5)

The derivative of f evaluated at z◦ are

f ′(z) =
−1

(z + 1)2
−→ f ′(z◦) = −d2 (A.6)

and

f ′′(z) =
2

(z + 1)3
−→ f ′′(z◦) = 2d3, (A.7)

so

f(za) ∼= d
[
1 − dδz + d2(δz)2

]
. (A.8)
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To determine δz, we begin by writing the fugacity in series form

za = z◦

[ ∞∑

k=0

(βêa · ~p)k

k!

][ ∞∑

k=0

(γE)k

k!

]

. (A.9)

In the subsonic limit, ~p � mc, keeping terms only to second order in the velocity, the fugacity
becomes

za = z◦

[

1 + βêa · ~p +
1

2
(βêa · ~p)2

]

(1 + γE) + O(v3). (A.10)

since p ∼ v and E ∼ v2. Then to second order in the velocity, the change in za is

δza ≡ za − z◦ =

(
1 − d

d

)[

βêa · ~p +
1

2
(βêa · ~p)2 + γE

]

+ O(v3) (A.11)

and the square of the change is

(δza)2 =

(
1 − d

d

)2

β2 (êa · ~p)
2

+ O(v3). (A.12)

Inserting the expressions for δz and (δz)2 into the Taylor expansion of f(za) we have

f(za) = d

{

1 − (1 − d)

[

βêa · ~p +
1

2
(βêa · ~p)2 + γE

]

+ (1 − d)2 (êa · ~p)
2

}

= d

[

1 − (1 − d) (βêa · ~p + γE) +
1

2
(1 − d)(1 − 2d)β2 (êa · ~p)

2

]

. (A.13)

We have the freedom to choose the coefficients β and γ to parameterized the distribution function
as we see fit to satisfy any two constraints. Consider a parameterization that fixes the value of the
coefficients β and γ by using the following moments for the mass density and momentum density

ρ = m

B∑

a=1

fa (A.14)

ρ~v = mc

B∑

a=1

êafa. (A.15)

The parameterization may be termed the non-Galilean parametrization. Constraints Equations (A.14)
and (A.15) are typically used in the formulation of classical lattice gases. The single particle distri-
bution function using this non-Galilean parameterization was first found in the mid 1980’s by the
US researchers Wolfram and Hasslacher and by the French researchers Frisch, d’Humières, Lalle-
mand, Pomeau, and Rivet [1, 3]. Their derivation of Equation (A.20) is different then the derivation
presented in this section; they used only two free coefficients in the expression for the fugacity, one
for the mass and the other for the momentum; whereas we use three free coefficients. The reason
for using only two free parameters is that in the standard single-speed classical lattice-gas construc-
tion, the energy is degenerate with the mass, so it was deemed unnecessary to keep a separate free
coefficient for the energy. However, it is expedient to use a free parameter for E. Using Equa-
tions (A.14) and (A.15) as constraint equations gives us a non-unity density-dependent prefactor in
the convective term in the hydrodynamic flow equation.

Inserting Equation (A.13) into Equation (A.15), the odd term in the distribution function ex-
pansion survives the first moment sum over lattice directions; the odd term is the one linear in the
momentum. This fixes the value of β to be

β = − D

1 − d
(A.16)
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so the distribution function becomes

fa = d

[

1 + Dêa · ~p +
D2

2

1 − 2d

1 − d
(êa · ~p)

2
+ (1 − d)γE

]

. (A.17)

Inserting Equation (A.17) into Equation (A.14), all the even terms that survive the sum over lattice
directions must add to zero. This fixes the value of γ as follows

D

2

1 − 2d

1 − d
p2 − (1 − d)γE = 0 (A.18)

or

γE = D
1 − 2d

(1 − d)2
p2

2
. (A.19)

Therefore, the non-Galilean parameterized distribution function is

fa = d

[

1 + Deaipi +
D(D + 2)

2
g(d)Qaijpipj

]

, (A.20)

where the density dependent prefactor g(d) is defined

g(d) ≡ D

D + 2

1 − 2d

1 − d
(A.21)

and the traceless second-rank tensor Q̂a is defined

Qaij ≡ eaieaj − δij

D
. (A.22)

Q̂a is an isotropic symmetric tensor. This mass-energy degeneracy leads to an anomalous description
of the lattice-gas fluid’s behavior. Let us see why. The second moment of Equation (A.20) gives the
momentum flux density

mc2
B∑

a=1

eaieajfa = Pδij + gρvivj . (A.23)

The density-dependent prefactor g appears in the nonlinear convective term, so this parametrization
does indeed give rise to non-Galilean fluid flow. The pressure in Equation (A.23) has a spurious
quadratic velocity dependence

P = ρc2
s

(

1 − g
v2

c2

)

. (A.24)
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